

ADDING VALUE TO ENGINEERING An Autonomous Institute Affiliated to Savitribai Phule Pune University Approved by AICTE, New Delhi and Recognised by Govt. of Maharashtra Accredited by NAAC with "A+" Grade | NBA - 5 UG Programmes

ACADEMIC COURSE STRUCTURE [as per NEP]

ELECTRONICS AND TELECOMMUNICATION ENGINEERING

B.TECH 4 YEAR UG COURSE (Applicable for the batches admitted from 2023-2024)

AISSMS INSTITUTE OF INFORMATION TECHNOLOGY Kennedy Road, Near RTO, Pune – 411 001, Maharashtra State, India Email: principal@aissmsioit.org, Website: <u>https://www.aissmsioit.org</u>

Institute Vision & Mission

Vision

To be recognized amongst top 10 private engineering colleges in Maharashtra by the year 2026 by rendering value added education through academic excellence, research, entrepreneurial attitude, and global exposure.

Mission

- To enable placement of 150 plus students in the 7 lacs plus category & ensure 100% placement of all final year students
- To connect with 10 plus international universities, professional bodies and organizations to provide global exposure to students
- To create conducive environment for career growth, prosperity, and happiness of 100% staff.
- To be amongst top 5 private colleges in Pune in terms of admission cut off.

Quality Policy

We commit ourselves to provide quality education & enhance our students quality through continuous improvement in our teaching and learning processes.

Department Vision & Mission

Vision

To be one of the renowned Electronics & Telecommunication Engineering programmes imparting quality education by promoting professionalism, values, and ethics leading to a progressive career in industry & academia globally.

Mission

- To boost employability/entrepreneurship/higher studies through value-added activities.
- To inculcate research attitude and professional ethics for addressing the needs of industry.

Program Educational Objectives (PEOs)

Graduates will

- 1. Engage in solving problems in the E&TC domain by developing products/offering services to cater to the needs of the society.
- 2. Work in diverse career fields of information and communication technology.
- 3. Develop new methodologies and technologies for solving real-life problems

- 1. Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. [Engineering knowledge]
- 2. Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. [Problem analysis]
- 3. Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. [Design/development of solutions]
- 4. Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. [Conduct investigations of complex problems]
- 5. Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations. [Modern tool usage]
- 6. Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. [The engineer and society]
- 7. Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. [Environment and sustainability]
- 8. Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. [Ethics]
- 9. Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. [Individual and team work]
- 10. Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. [Communication]
- 11. Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. [Project management and finance]
- 12. Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. [Life-long learning]

Program Specific Outcomes (PSOs)

Graduates will be able to

- 1. Apply domain-specific knowledge to analyze, design and develop electronics and telecommunication systems/applications in the field of Embedded Systems, Very Large Scale Integration (VLSI), Internet of Things (IoT), and Communication Technology.
- 2. Select and apply software and hardware tools such as Electronic Design Automation (EDA) and Test/Measurement equipment to solve engineering problems.

Program- E&TC Engineering (Autonomous Curriculum Structure)

A. Definition of Credit:

1 Hr. Lecture (L) per week	1 credit
1 Hr. Tutorial (T) per week	1 credit
1 Hr. Practical (P) per week	0.5 credits
2 Hours Practical (Lab)/week	1 credit

B. Range of credits -

A range of credits from 160 to 176 for a student to be eligible to get Undergraduate degree in Engineering. A student will be eligible to get Undergraduate degree with Honors 20 credits and/or Minors14 credits, if he/she completes additional credits.

C. Credit for Undergraduate Degree in E&TC Engineering

Sr. No.	Year	Semester	Credits
1	First Year	Ι	21
2		II	19
3	Second Year	III	22
4	Second Tear	IV	24
5	Third Year	V	23
6		VI	25
7	Final Year	VII	12
8		VIII	14
	Total Credits		160

D. Structure of Undergraduate Engineering program

Sr.	Domains	Code	Credits	NEP Suggested
no.	Domanis	Coue	Creuits	NEI Suggesteu
1	Basic Science courses	BSC	16	14-18
2	Engineering Science courses	ESC	16	12-16
3	Programme Core Courses	PCC	59	44-56
4	Programme Elective courses	PEC	15	20
5	Open Elective other than particular Programme	OEC	06	08
6	Vocational and Skill Enhancement Course	VSE	08	08
7	Humanities Social Science and Management	HSM	12	14
8	Experiential Learning Courses	ELC	24	22
9	Liberal Learning Courses	LLC	04	04
	Total	•	160	160-176

E. Domain wise credits Distribution

							Cred	its			
Sr. no.	Code				Sem	ester	S			Tatal	NED
		Ι	Π	III	IV	V	VI	VII	VIII	Total	NEP
1	BSC	8	8	-	-	-	-	-	-	16	14-18
2	ESC	9	7	-	-	-	-	-	-	16	12-16
3	PCC	-	-	16	16	13	11	3	-	59	44-56
4	PEC	-	-	-	-	4	4	7	-	15	20
5	OEC	-	-	3	-	3		-	-	6	08
6	VSE	1	1	-	3	-	3	-	-	8	08
7	HSM	-	-	3	3	3	3	-	-	12	14
8	ELC	3	3	-	-	-	2	2	14	24	22
9	LLC	-	-	-	2		2	-	-	4	04
Tota	l Credits	21	19	22	24	23	25	12	14	160	160-174
Exa	m Total	650	650	725	725	725	725	600	600	5400	
	king Hours per Week	30	28	24	26	26	29	16	26		

F. Honors Structure: BUSINESS ANALYTICS AND ENTREPRENEURSHIP

Sr. No.	Course Code	Courses Name	Sem	Hour	s per	week	Credit		Exa	minati	ion Sc	heme	Total
110.	Couc			L	Т	Р		ISE	ESE	TW	PR	OR	
1	ETHDT511	Basic Digital Marketing	V	3	-	2	4	40#	60*	25	-	25	150
2	ETHDT613	Advance Digital Marketing	VI	3	-	2	4	40#	60*	25	-	25	150
3	ETHDT707	Entrepreneurship I	VII	3	-	4	5	40#	60*	25	-	25	150
4	ETHDT803	Entrepreneurship II	VIII	3	-	4	5	40#	60*	25	-	25	150
			Total	12	-	12	18	160	240	100	-	100	600

G. Honors Degree- with Research

Sr. No.	Course Code	Courses Name	Sem	Hour	s per	week	Credit		Exa	aminat	ion Sc	heme	Total
INU.	Coue			L	T	Р		ISE	ESE	TW	PR	OR	
1	ETHDR708	Research Methodology	VII	3	-	-	3	40#	60*	-	-	-	100
2	ETHDR709	Mathematical Modeling	VII	3	-	-	3	40#	60*	-	-	-	100
3	ETHDR710	Dissertation Phase I	VII	-	-	4	2	-	-	25		25	50
4	ETHDR804	Research Publicationand Ethics	VIII	2	-	-	2	20#	30#	-	-	-	50
5	ETHDR805	Paper Publication	VIII	-	-	4	2	-	-	50	-	-	50
6	ETHDR806	Dissertation Phase II	VIII	-	-	12	6	-	-	100	-	50	150
			Total	8	-	20	18	100	150	175	100	75	500

H. Major Courses

Sr. No.	Course code	Courses Name	Sem	Hou	rs per	week	Credit		Exam	ination	Scher	ne	Total
				L	Т	P		ISE	ESE	TW	PR	OR	
1.	ETPCC302	Applied Mathematics	III	3			3	40#	60*				100
2.	ETPCC303	Analog Electronic Circuits	III	4			4	40#	60*				100
3.	ETPCC304	Digital Systems	III	3			3	40#	60*		50		100
4.	ETPCC305	Electronic instrumentation & Measuring Systems	III	3			3	40#	60**			-	100
5.	ETPCC307	Analog Electronic Circuits Lab	III			2	1				50		50
6.	ETPCC308	Digital Systems Lab	III			2	1				50		50
7.	ETPCC308	Electronic instrumentation & MeasuringSystems Lab	III			2	1				50		50
8.	ETPCC402	Integrated circuits	IV	3			3	40#	60*				100
9.	ETPCC403	Data structures	IV	3			3	40#	60**				100
10.	ETPCC404	Signals & systems	IV	3			3	40#	60*				100
11.	ETPCC405	Analog Communication	IV	3	-		3	40#	60*				100
12.	ETPCC407	Integrated circuits Lab	IV			2	1				50		50
13.	ETPCC408	Data structures Lab	IV			2	1			25			25
14.	ETPCC409	Signals & systems Lab	IV		1		1			25			25
15.	ETPCC410	Analog Communication Lab	IV			2	1				50		50

AISSMS Institute of Information Technology, Pune

							Pro	gram	– E &'	ГС En	ginee	ring	
16.	ETPCC502	Electromagnetic Field Theory and Antenna design	V	3	1		4	40#	60*				100
17.	ETPCC503	Microcontroller & Embedded Systems	V	3			3	40#	60**				100
18.	ETPCC504	Digital Communication and Coding Theory	V	4			4	40#	60*				100
19.	ETPEC505	Elective I: Digital signal processing/ Mechatronics	V	3			3	40#	60*				100
20.	ETPCC507	Microcontroller & Embedded Systems	V			2	1				50		50
21.	ETPCC508	and Coding Theory	V			2	1				50		50
22.	ETPEC509	Elective I Lab : Digital signal processing/ Mechatronics	V			2	1					50	50
23.	ETPCC602	Computer Networks	VI	3			3	40#	60**				100
24.	ETPCC603	Power Electronics	VI	3			3	40#	60*				100
25.	ETPCC604	Cellular Network	VI	3		2	4	40#	60*				100
26.	ETPEC605	Elective II: Antenna and wave theory/VLSI	VI	3			3	40#	60*				100
27.	ETPCC607	Computer Networks and Power Electronics Lab	VI			2	1				50		50
28.	ETPEC608	Elective II Lab : Antenna and wave theory/ VLSI	VI			2	1				50		50
29.	ETELC609	Mini Project	VI			4	2					50	50
30.	ETPCC701	5G Technology	VII	2			2	40#	60*				100
31.	ETPEC702	Elective III- Digital image and video processing/Audio Video Engineering/ Fiber optics and communication	VII	3			3	40#	60*				100
32.	ETPEC703	Elective IV- Electronics in agriculture/Wireless sensor network/Electronic Product design	VII	3			3	40#	60*				100
33.	ETPCC704	5G Technology Lab	VII			2	1				50		50
34.	ETPEC705	Elective III Lab- Digital image and video processing/Audio Video Engineering/	VII			2	1			50	50		100
		Fiber optics and communication											
35.	ETELC706	Project stage I	VII			4	2			100		50	150
36.	ETELC801	Internship/2 MOOCs/ Entrepreneurship/ Research Project/ Foreign University Certification Course	VIII	2		20	12			200 @		100	300
37.	ETELC802	Project stage II	VIII			4	2			200 @		100	300
	l	Total		60	2	60	92	760	1140	750	525	500	3525

I. Minor Courses:

Sr. No.	Course code	Courses Name	Sem	Hours per	week		Credit		Exan	ninatior	Scher	ne	Total
110.				L	T	Р		ISE	ESE	TW	PR	OR	
1.	ETMNR301	Analog Electronic Circuits	III	3			3		75*				75
2.	ETMNR302	Analog Electronic Circuits Lab	III			2	1			25			25
3.	ETMNR401	Integrated circuits	IV	3			3		75*				75
4.	ETMNR402	Integrated circuits Lab	IV			2	1			25			25
5.	ETMNR501	Microcontroller and Embedded Systems	V	3			3		75*				75
6.	ETMNR502	Microcontroller and Embedded Systems Lab	V			2	1			25			25
7.	ETMNR601	VLSI	VI	3			3		75*				75
8.	ETMNR602	VLSI Lab	VI			2	1			25			25
	1	Total		12		8	16		300	100			400

J. Open Elective Courses

Sr. No.	Course code	Courses Name	Sem	Hours per	week		Credit		Exan	ninatio	on Schei	me	Total
110.				L	Т	Р		ISE	ESE	TW	PR	OR	
1.	ETOEC306	Open source software: ESim- MOOCS (H/W oriented programming language)	III	3			3	40 ^{\$}	60 ^{\$\$}	-			100
2.	ETOEC506	IoT-MOOCS	V	3			3	40 ^{\$}	60 ^{\$\$}				100
	1	Total	1	6			6	80	120				200

K. Vocational and Skill Enhancement Courses

Sr. No.	Course code	Courses Name	Sem	Hours per v	week		Credit		Exam	ination	Scher	ne	Total
110.				L	Т	Р		ISE	ESE	TW	PR	OR	
1	ETVSE406	Open-source software –Scilab	IV	1		4	3			50	50		100
2	ETVSE606	Embedded systems & RTOS	VI	1		4	3			50	50		100
	Total			2		8	6			100	100		200

Sr. No.		Courses Name	Sem	Hours	per we	ek	Credit		Examir	nation S	chem	e	Total
190.	Coue			L	Т	Р		ISE	ESE	TW	PR	OR	
1.	ETHSM301	Democracy, election and Governance	III	2			2			25	-	25	50
2.	ETHSM310	Audit Course 3: Vedic Mathematics	III	1			1		-	25	-		25
3.	ETHSM401	Business Accounting for Engineering	IV	2			2			25		25	50
4.	ETHSM411	Audit Course 4 : Sustainable development goal	IV	1			1			25			25
5.	ETHSM501	Intellectual Property Rights	V	2			2			25		25	50
6.	ETHSM510	Audit Course 5: Foreign Language Japanese /German Level 1	V	1			1			25			25
7.	ETHSM601	Seminar and technical paper writing	VI	1		2	2			50			50
8.	ETHSM610	Audit Course 6: Foreign Language Japanese /German Level 2	VI	1			1			25			25
		Total		11		2	12			225		75	300

L. Humanities Social Science and Management Courses

M. Experiential Learning Courses

Sr.	Course	Courses Name	Sem	Hours	per w	eek	Credit	Examination Scheme					Total
No.	Code			L	Т	Р		ISE	ESE	TW	PR	OR	
1	ETELC609	Mini project	VI			4	2					50	50
2	ETELC706	Project Stage 1	VII			4	2			100		50	150
3	ETELC801	Internship	VIII	2		20	12			200 [@]		100	300
4	ETELC802	Project Stage 2	VIII			4	2			200		100	300
	Total					30	18			500		300	800

Sr. No.	Course Code	Courses Name	Sem	Hours per week			Credit	Examination Scheme				e	Total
				L	Т	Р		ISE	ESE	TW	PR	OR	
1	ETLLC412	Lifelong learning skills 1	IV	1			1						
2	ETLLC413	Lifelong learning skills 2	IV	1			1						
3	ETLLC611	Lifelong learning skills 3	VI	1			1						
4	ETLLC612	Lifelong learning skills 4	VI	1			1						
	Total			4			4						

N. Liberal Learning Courses

All the students are required to acquire 2 credits, one each from A. and B. which will have grades as below:

A. Extracurricular Activities:

Sr. No.	Activity	Level	Achievement	Grade	Achievement	Grade
1.	Sports	Inter collegiate	Participation	Р	Prizewinner	С
		University	Participation	С	Prizewinner	В
		Zonal	Participation	В	Prizewinner	B+
		State	Participation	B+	Prizewinner	А
		National	Participation	А	Prizewinner	A+
		International	Participation	A+	Prizewinner	0
2.	NSS/NCC	Camp	Attended	В		
		Camp+5Activities	Attended	B+		
		Camp+10Activities	Attended	А		
		Camp+15Activities	Attended	A+		
		Camp+20Activities	Attended	0		
3.	Cultural	Inter collegiate	Participation	В	Prizewinner	B+
		State	Participation	B+	Prizewinner	А
		National	Participation	А	Prizewinner	A+
		International	Participation	A+	Prizewinner	0
4.	Community	Certified by	1 Activity	В		
	Engagement	NGO/Authorities with	2Activities	B+		1
		report and geo- tagged	3Activities	А		
		photograph	4Activities	A+		1
			5Activities	0		

Sr. No	Activity	Level	Achievement	Grade	Achievement	Grade
1.	Conference	National	Participation	В	Prizewinner	A
1.	Completence	International	Participation	B+	Prizewinner	A+
		International(Scopus indexing)	Participation	A+	Prizewinner	0
2.	Journal Publication	Non-refereed but recognized and reputed journal/periodical having ISSN number.		В		
		Refereed Journal - As listed by UGC		А		
		Refereed Journals- As listed by Scopus		A+		
		Refereed Journals - As listed by SCI/SCIE		0		
3.	Hackathon		Participation	A+	Prizewinner	0
4.	Professional	National	Membership	Р	3 rd Prize	А
	Body		Activities/ participation	В	2 nd Prize	A+
			5participations	B+	1 st Prize	0
5.	Internship	1 week	Completed	С		
	1	2 week	Completed	В		
		3 week	Completed	B+	Sponsored Project	A+
		4 week	Completed	A	Job through internship	0
6.	Entrepreneurs hip	Awareness camp	Attended	A	Product Developed	A+
					Own Startup	0
7.	Project/Technic	Inter collegiate	Participation	Р	Prizewinner	С
	al events	University	Participation	C	Prizewinner	В
		Zonal	Participation	В	Prizewinner	B+
		State	Participation	B+	Prizewinner	А
		National	Participation	А	Prizewinner	A+
		International	Participation	A+	Prizewinner	0

O. Exit Courses

			Certificate	cour	se in E	lectron	ic Circui	it Desig	n				
	Exit	Course	Course Name	Hours	per we	eek	Credit		Exami	ination	Schem	ie	Total
No.	Point	code		L	Т	Р		ISE	ESE	TW	PR	OR	
1	Exit course after	ETEX101	Analog Electronic circuits			4	2			50			50
	F.Y	ETEX102	Digital Systems			4	2			50			50
		ETEX103	Internship			8	4			100			100
Tota	al					16	8			200			200
			Diploma	in El	ectroni	ics Har	dware do	esign					
2	Exit course After S.Y.	ETEX201	Microcontroller and Embedded Systems	-		4	2			50			50
		ETEX202	Digital Communicatio n and coding theory	-		4	2			50			50
		ETEX203	Internship	-		8	4			50			50
Tot	al			-		16	8			200			200
	-			. Voc i	in Sign	al Proc	essing						-
3	Exit Course After T.Y.	ETEX301	Digital imageand video processing	-		4	2			50			50
		ETEX302	Audio Video Engineering	-		4	2			50			50
		ETEX303	Internship	-		8	4			50			150
To	tal		I	-		16	8	-		200			200

SEMESTER WISE STRUCTURES

Sr.		Electronics & Teleco				Credits						
No.	Code	Course Title	L	Т	Р	orcuits	ISE	ESE	TW	PR	OR	Total
1	ETHSM301	Democracy, election and governance	2			2	-	-	25	-	25	50
2	ETPCC302	Applied mathematics	3			3	40#	60*	-	-	-	100
3	ETPCC303	Analog Electronic Circuits	4			4	40#	60*	-	-	-	100
4	ETPCC304	Digital Systems	3			3	40#	60*	-	-	-	100
5	ETPCC305	Electronic instrumentation& Measuring Systems	3	-		3	40#	60**	-	-	-	100
6	ETOEC306	Open source software: ESim- MOOCS (H/W oriented programming language)	3			3	40\$	60\$\$	-	-	-	100
7	ETPCC307	Analog Electronic Circuits Lab			2	1	-	-		50	-	50
8	ETPCC308	Digital Systems Lab			2	1	-	-		50		50
9	ETPCC309	Electronic instrumentation & Measuring Systems Lab			2	1	-	-	50	-		50
10	ETHSM310	Audit Course 3: Vedic Mathematics	1			1	-	-	25	-		25
	1	Total	19		06	22	200	300	100	100	25	725

Electronics & Telecommunication Engineering - Second Year (Semester –III)

* End Semester Examination (ESE) based on subjective questions.

** Practical or Activity based Evaluation.

- # In Semester Evaluation based on Presentation/Group Discussion/Laboratory Work/Course Project/Home Assignment/Comprehensive Viva Voce/Blog Writing/Case Study/Survey/Multiple-Choice Question (MCQ) examination/Subjective Examination
- **For MOOCs:** Assignments marks will be converted on the scale of 40 marks.
- **For MOOCs:** Score of examination conducted by the respective authority of MOOCor Score of ESE Conducted by Institute will be converted on the scale of 60 marks.

MOOC:

ESim- EDA tool for circuit design, simulation, analysis and PCB design:(8weeks)

https://onlinecourses.swayam2.ac.in/aic20_sp59/preview

Sr.		Electronics & Telecol		ours per			Examination scheme							
~	Code	Course Title	L	T	P	Credits								
No.				1	1		ISE	ESE	TW	PR	OR	Total		
1	ETHSM401	Business Accounting for Engineering	2	-	-	2	-	-	25	-	25	50		
2	ETPCC402	Integrated Circuits	3	-	-	3	40#	60*	-	-	-	100		
3	ETPCC403	Data structures	3	-	-	3	40#	60**	-	-	-	100		
4	ETPCC404	Signals & systems	3		-	3	40#	60*	-	-	-	100		
5	ETPCC405	Analog Communication	3	-	-	3	40#	60*	-	-	-	100		
6	ETVSE406	Open- source software – Scilab	1	-	4	3	-	-	50	50		100		
7	ETPCC407	Integrated Circuits Lab	-	-	2	1	-	-		50	-	50		
8	ETPCC408	Data structuresLab	-	-	2	1	-	-	25	-		25		
9	ETPCC409	Signals & systems lab	-	1	-	1	-	-	25	-	-	25		
10	ETPCC410	Analog Communication Lab	-	-	2	1	-	-	-	50	-	50		
11	ETHSM411	Audit Course 4 : Sustainable development goal	1	-	-	1	-	-	25	-	-	25		
12	ETLLC412	Lifelong learning skills 1	-	-	-	1	-	-	-	-	-	-		
13	ETLLC413	Lifelong learning skills 2	-	-	-	1	-	-	-	-	-	-		
	Total		16	01	10	24	160	240	150	150	25	725		

Electronics & Telecommunication Engineering- Second Year (Semester –IV)

* End Semester Examination (ESE) based on subjective questions.

** Practical or Activity based Evaluation.

- # In Semester Evaluation based on Presentation/Group Discussion/Laboratory Work/Course Project/Home Assignment/Comprehensive Viva Voce/Blog Writing/Case Study/Survey/Multiple-Choice Question (MCQ) examination/ Subjective Examination.
- **For MOOCs :** Assignments marks will be converted on the scale of 40 marks.
- **For MOOCs:** Score of examination conducted by the respective authority of MOOCor Score of ESE Conducted by Institute will be converted on the scale of 60 marks.

Sr.		Electromes & rele		Hours p	•			Examinati	ion sch	eme		
No.	Code	Course Title	L	Т	Р		ISE	ESE	тw	PR	OR	Total
1	ETHSM501	Intellectual Property Rights	2			2	-	-	25	-	25	50
2	ETPCC502	Electromagnetic Field Theory and Antenna design	3	1		4	40#	60*	-	-	-	100
3	ETPCC503	Microcontroller & Embedded Systems	3			3	40#	60**	-	-	-	100
4	ETPCC504	Digital Communication and Coding Theory	4			4	40#	60*	-	-	-	100
5	ETPEC505	Elective I: Digital signal processing/ Mechatronics	3			3	40#	60*	-	-	-	100
6	ETOEC 506	IoT-MOOCS	3			3	40\$	60\$\$	-	-		100
7	ETPCC507	Microcontroller & Embedded Systems Lab			2	1	-	-		50	-	50
8	ETPCC508	Digital Communication and Coding Lab			2	1	-	-		50	-	50
9	ETPEC509	Elective I Lab			2	1	-	-		-	50	50
10	ETHSM510	Audit Course 5: Foreign Language Japanese /German Level 1	1			1			25			25
	Т	otal	19	01	06	23	200	300	50	100	75	725

Electronics & Telecommunication Engineering- Third Year (Semester –V)

* End Semester Examination (ESE)based on subjective questions.

** Practical or Activity based Evaluation.

- # In Semester Evaluation based on Presentation/Group Discussion/Laboratory Work/Course Project/Home Assignment/Comprehensive Viva Voce/Blog Writing/Case Study/Survey/Multiple-Choice Question (MCQ) examination/ Subjective Examination.
- **For MOOCs:** Assignments marks will be converted on the scale of 40 marks.
- **For MOOCs:** Score of examination conducted by the respective authority of MOOCor Score of ESE Conducted by Institute will be converted on the scale of 60 marks.

Elective-I	 Digital Signal Processing Mechatronics
------------	---

MOOC:

Introduction To Internet of Things (12weeks)

https://onlinecourses.nptel.ac.in/noc22_cs53/preview

Sr.			Hours per week				Examination scheme						
Sr.	Code	Course Title				Credits		Exa	minati	on sch	eme		
No.	Code	Course Thie	L	Т	Р		ISE	ESE	тw	PR	OR	Total	
1	ETHSM601	Seminar and Technical paper writing	1		2	2	-	-	50	-	-	50	
2	ETPCC 602	Computer Networks	3		-	3	40#	60**	-	-	-	100	
3	ETPCC603	Power Electronics	3		-	3	40#	60*	-	-	-	100	
4	ETPCC 604	Cellular Network	3		2	4	40#	60*	-	-	-	100	
5	ETPEC605	Elective II: Antenna and wave theory/ VLSI	3			3	40#	60*	-	-	-	100	
6	ETVSE 606	Embedded systems & RTOS	1		4	3	40\$	60\$\$	-	-	-	100	
7	ETPCC 607	Computer Networks and Power Electronics Lab			2	1	-	-		50	-	50	
8	ETPEC608	Elective II Lab			2	1	-	-		50		50	
9	ETELC609	Mini project			4	2	-	-		-	50	50	
10	ETHSM610	Audit Course 6: Foreign Language Japanese /German Level 2	1			1			25			25	
11	ETLLC611	Lifelong learning skills 3				1							
12	ETLLC612	Lifelong learning skills 4				1							
	T	otal	15	-	16	25	200	300	75	100	50	725	

Electronics & Telecommunication Engineering- Third Year (Semester –VI)

* End Semester Examination (ESE) based on subjective questions.

** Practical or Activity based Evaluation.

- # In Semester Evaluation based on Presentation/Group Discussion/Laboratory Work/Course Project/Home Assignment/Comprehensive Viva Voce/Blog Writing/Case Study/Survey/Multiple-Choice Question (MCQ) examination/ Subjective Examination
- **For MOOCs:** Assignments marks will be converted on the scale of 40 marks.
- **For MOOCs:** Score of examination conducted by the respective authority of MOOCor Score of ESE Conducted by Institute will be converted on the scale of 60 marks.

	1. Antenna and wave theory
Elective-II	2. VLSI

Sr.		Electronics & Telec		ours per w	U				nination scheme					
No.	Code	Course Title	L	T	P	Credits	ISE	ES E	TW	DD	OR	Total		
1	ETPCC701	5G Technology	2	-	-	2	40#	60*	-	-	-	100		
2	ETPEC702	Elective III- Digitalimage and video processing/Audio Video Engineering/Fiber optics and communication	3	-	-	3	40#	60*	-	_	-	100		
3	ETPEC703	Elective IV- Electronics in agriculture/Wireless sensor network/Electronic Product design	3	-	-	3	40#	60*	-	-	-	100		
4	ELPCC704	5G Lab	-	-	2	1	-	-	-	50	-	50		
5	ETPEC705	Elective III Lab	-	-	2	1	-	-	50	50	-	100		
6	ETELC 706	Project Stage1	-	-	4	2	-	-	100	-	50	150		
	Total	l	8	-	8	12	120	180	150	100	50	600		

Electronics & Telecommunication Engineering- Final Year (Semester –VII)

- * End Semester Examination (ESE) based on subjective questions.
- ** Practical or Activity based Evaluation.
- # In Semester Evaluation based on Presentation/Group Discussion/Laboratory Work/Course Project/Home Assignment/Comprehensive Viva Voce/Blog Writing/Case Study/Survey/Multiple-Choice Question (MCQ) examination/ Subjective Examination
- **For MOOCs:** Assignments marks will be converted on the scale of 40 marks.
- **For MOOCs:** Score of examination conducted by the respective authority of MOOC or Score of ESE Conducted by Institute will be converted on the scale of 60 marks.

Elective - III	Elective - IV	
1. Digital image and video processing	1.Electronics in agriculture	
2. Audio Video Engineering	2.Wireless sensor network	
3. Fiber optics and communication	3.Electronic Product design	

Sr.			Н	ours per we	ek	Credits		E	xamin	ation s	cheme	
No.	Code	Course Title	L	Т	Р	creans	ISE	ESE	TW	PR	OR	Total
1	ETELC801	Internship/ 2 MOOCs/ Entrepreneurs hip/ Research Project/ Foreign University Certification Course	2		20	12			200 [@]		100	400
2	ETELC802	Project stage II	-	-	04	2	-	-	200 @	-	100	300
		Total	02		24	14	-	-	400	-	200	600

Electronics & Telecommunication Engineering- Final Year (Semester –VIII)

For MOOCs: Assignments marks will be converted on the scale of 40 marks.

\$\$ Score of examination conducted by the respective authority of MOOC or Score of ESE Conducted by Institute will be converted on the scale of 60 marks.

@ Marks obtained in two MOOCs will be converted on the scale of 200 marks.

Under ETELC801 select any two Massive Open Online Courses (not less than 8 week) the table listed below

CMOS Digital VLSI Design	https://onlinecourses.nptel.ac.in/noc21_ee09/preview
Real-time Digital Signal Processing	https://onlinecourses.nptel.ac.in/noc22_ee99/preview_

Second Year Electronics and Telecommunications (2022 Course) Democracy, Election and Governance ETHSM 301

Course Code:	ETHSM301	Credit	2
Contact Hours:	2 Hrs/week (L)	Type of Course:	Lecture
Examination Scheme	TW Evaluation 25 Marks	Oral 25 Marks	

Pre-requisites:

Course assessment methods/tools:

Sr. No.	Course assessment methods/tools	External/ Internal	Marks				
1.	Term work Evaluation	Internal	25				
2.	Oral	Internal	25				
Course	Objectives						
1	To introduce the students meaning of o	lemocracy and the rol	e of the governanc				
2	To help them understand the various appr governance.	oaches to the study of d	emocracy and				
Course	Outcomes: Students will be able to						
301.1	Know the meaning of democracy and	the role of the governa	nce in life.				
301.2	Understand the various approaches to the	e democracy and governam	ice.				
Topic	s covered:						
UNIT	I: Democracy- Foundation and Dimension	ns (5 hrs.)					
a.	Constitution of India						
b.	Evolution of Democracy- Different Models	5					
c.	Dimensions of Democracy- Social, Econom	nic, and Political					
UNIT	II: Decentralization (5 hrs.)						
a.	Indian tradition of decentralization						
	History of panchayat Raj institution in the l	ost independence period	l				
с.	73 rd and 74 th amendments						
d.	Challenges of caste, gender, class, democra	cy and ethnicity					
UNIT III: Governance (5 hrs.)							
a.	a. Meaning and concepts						
b.	b. Government and governance						
c.	c. Inclusion and exclusion						
Syllabus contents required for competitive exams (GATE, UPSC, MPSC etc.)(<i>if</i> completeunit is applicable then write only "unit 1/2/" or write the contents from that unit):1. NA.							

Text Books:

1. Banerjee-Dube, I. (2014). A history of modern India. Cambridge UniversityPress.

2. Basu, D. D. (1982). Introduction to the Constitution of India. Prentice Hall ofIndia.

3. Bhargava, R. (2008). Political theory: An introduction. Pearson EducationIndia.

4. Bhargava, R., Vanaik, A. (2010) *Understanding Contemporary India: Critical Perspective*. New Delhi: Orient Blackswan.

5. Chandhoke. N., Proyadardhi.P, (ed) (2009), '*Contemporary India: Economy, Society, Politics*', Pearson India Education Services Pvt. Ltd, ISBN 978-81- 317-1929-9.

6. Chandra, B. (1999). Essays on contemporary India. Har-Anand Publications.

7. Chaterjee, P. (1997). State and Politics in India.

8. Dasgupta. S., (ed) (2011), '*Political Sociology*', Dorling Kindersley (India)Pvt. Ltd., Licensees of Pearson Education in south Asia. ISBN: 978-317-6027-7.

9. Deshpande, S. (2003). Contemporary India: A Sociological View, New Delhi:Viking Publication.

10. Guha, R. (2007). India After Gandhi: The History of the World's Largest. *Democracy, HarperCollins Publishers, New York*.

11. Guha, R. (2013). Gandhi before India. Penguin UK.

12. Jayal. N.G. (2001). Democracy in India. New Delhi: Oxford University Press

13. Kohli, A. (1990). *Democracy and discontent: India's growing crisis of governability*. Cambridge University Press.

14. Kohli, A., Breman, J., & Hawthorn, G. P. (Eds.). (2001). *The success of India's democracy* (Vol. 6). Cambridge University Press.

15. Kothari, R. (1989). State against democracy: In search of humane governance. Apex Pr.

16. Kothari, R. (1970). Politics in India. New Delhi: Orient Blackswan

17. Kothari, R. (1995). Caste in Indian politics. Orient Blackswan.

18. Sarkar, S. (2001). Indian democracy: the historical inheritance. the Success of India's Democracy, 23-46.

मराठी संदर्भ ग्रंथ:

- राही श्रुती गणेश., आवटे श्रीरंजन, (२०१९), 'आपलं आयकार्ड', सुहास पळशीकर द युनिक अकॅडमी पब्लिकेशनप्रा.लि...
- २. व्होरा राजेंद्र., पळशीकर, सुहास.(२०१४). *भारतीय लोकशाही अर्थ आणि व्यवहार*. पुणे : डायमंड प्रकाशन.
- ३. सुमंत, यशवंत.(२०१८). *प्रा. यशवंत सुमंत यांची तीन भाषणे*. पुणे : युनिक अँकँडमी पब्लिकेशन्स प्रा.लि
- ४. भोळे. भा.ल. (२०१५). *भारतीय गणराज्याचे शासन आणि राजकारण*. नागपूर: पिंपळापुरे बुक प्रकाशन
- ५. कसबे. रावसाहेब. (२०१०)डॉ. आंबेडकर आणि भारतीय राज्यघटना. पुणे: सुगावा प्रकाशन

Note: The assessment for the subject shall be based on presentation and report submission.

Second Year Electronics and Telecommunications (2022 Course) Applied Mathematics ETPCC 302						
Course Code:	ETPCC 302	Credit	3			
Contact Hours:	3 Hrs/week (L)	Type of Course:	Lecture			
Examination Scheme	In-sem. Evaluation 40 Marks	End-sem. Examination 60 Marks				

Pre-requisites: Differential equations of first order and first degree, Integral calculus and vector calculus.

Course assessment methods/tools:

Course as	sessment methous/tools.							
Sr. No.	Course assessment methods/tools	External/ Internal	Marks					
1.	In-Sem. Evaluation	Internal	40					
2.	End Semester Examination	End Semester ExaminationExternal60						
Course	Course Objectives							
1	To make the students familiarize with concepts and techniques in higher order differential equations.							
2	To impart the knowledge of Laplace transform	m and inverse Laplace tran	sform.					
3	To provide the knowledge about the statistica distribution to model the random processes in	1 2	ory, probability					
4	To introduce the basic concept of vector diffe	rentiation and integration.						
Course	Outcomes: Students will be able to							
302.1	Solve higher order linear differential equati it for analysis control systems, signal conditioned		iques for modelinguse					
302.2	Explain the concept of Laplace transform a processing and control systems.	nd use it solve problems re	elated to signal					
302.3	Explain least square method to fit a curve, c data and use it for histogram calculations &		gression lines for the					
302.4	Explain the concept the probability distribut calculations & image processing.	tion for data analysis and u	ise it for histogram					
302.5	Find the differentiation of vector function a theory.	and apply to electro- magn	etic fields & wave					
302.6								
Topics covered:								
LDE of General Simultar processi		nplementary Function, on of parameters, Cauch	Particular Integral, ar y's and Legendre's DF					
UNIT II: Laplace Transform (6 hrs.)								

Laplace Transform Definition, Laplace transform of elementary functions, properties of Laplace transforms multiplication by nt, division by t and derivatives. Inverse Laplace transform Applications of Laplace transforms to solve differential equation.

UNIT III: Statistics (6 hrs.)

Measures of central tendency, Measures of dispersion, Coefficient of variation, Moments, Skewness and Kurtosis, Curve fitting: fitting of straight line, parabola and related curves, Correlation and Regression, Applications to Characteristics of equipment and signals.

UNIT IV: Probability and Probability Distributions (6 hrs.)

Probability, Theorems on Probability, Probability density function, Probability distributions, Binomial distribution, Poisson distribution, Normal distribution, Test of Hypothesis: Chi-Square test, t-test, Applications to image processing, Histogram calculation, signal transmission and reception.

UNIT V- Vector Differential Calculus (6 hrs.)

Physical interpretation of Vector differentiation, Vector differential operator, Gradient Divergence and Curl, Directional derivative, Solenoidal, Irrotational and Conservative fields Scalar potential, Vector identities.

UNIT VI- Vector Integral Calculus & Applications (6 hrs.)

Line, Surface and Volume integrals, Work-done, Green"s Lemma, Gauss's Divergence theorem, Stoke's theorem. Applications to problems in Electro-magnetic fields.

Text Books:

 B. V. Ramana, Higher Engineering Mathematics, Tata McGraw Hill. B.S. Grewal, 'Higher engineering Mathematics', Khanna publishers, Delhi (40th edition),(2008).

Reference Books:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10th edition, Wiley Publications, 2015.
- 2. C. Ray Wylie and Louis C. Barrett Advanced Engineering Mathematics, 6th edition, Tata-McGra w Hill 2005.
- 3. Introduction to Probability and Statistics for Engineers and Scientists, 5e, by Sheldon M. Ros (Elsevier Academic Press).

Program: Electronics and Telecommunication Engineering

Second Year Electronics and Telecommunications (2022 Course) Analog Electronic Circuits ETPCC303						
Course Code:ETPCC303Credit4						
Contact Hours:	4 Hrs/week (L)	Type of Course:	Lecture			
	In-sem. Evaluation 40 Marks	End-sem. Examination 60 Marks				

Pre-requisites:

Basic knowledge of Semiconductor Physics and Basic Electronics Engineering.

	e	6 6			
Sr. No.	Course assessment methods/tools	External/ Internal	Marks		
1.	In-Sem. Evaluation	Internal	40		
2.	End Semester Examination	External	60		
Course	Objectives				
1	To brief about Semiconductor devices JFE parameters and applications.	T & MOSFET, its chara	acteristics,		
2	To discuss MOSFET DC and AC Configu	rations and it's analysis.			
3	To explain various MOSFET Circuits				
4	To introduce concepts of feedbacks in amp				
5	To impart skills to evaluate the performance	ce of voltage regulator a	nd SMPS Circuits		
Course	Outcomes: Students will be able to				
303.1	Compare the characteristics and parame	ters of JFET towards its	applications.		
303.2	Compare the characteristics and parame	ters of MOSFET toward	ls its DC circuits.		
303.3	Interpret, apply & evaluate MOSFET A	C circuits.			
303.4	Explain various MOSFET circuits and the	heir applications.			
303.5	303.5 Explain MOSFET amplifiers with and without feedback & MOSFET oscillators, for given specifications.				
303.6	Analyze the performance of linear and switching voltage regulators towards applications in regulated power supplies.				
Topics covered:					
	UNIT I: Junction Field Effect Transistor (JFET) (6 hrs.) Introduction to IEET Types Construction Operation Static Characteristics Pinch off voltage				

Introduction to JFET, Types, Construction, Operation, Static Characteristics, Pinch off voltage JFET Volt-Ampere characteristics, JFET Configurations (Common Source/Commo Drain/Common Gate) and their Comparison. Self-Biasing circuit of JFET, Small signal mode of JFET, JFET as an amplifier & its analysis (Common Source). Frequency response of Commo Source JFET amplifier.

UNIT II: Metal Oxide Semiconductor FET(MOSFET) & it's DC Analysis (6 hrs.)

MOSFET operation, Construction of n-channel E-MOSFET, E-MOSFET characteristics & parameters, non-ideal voltage current characteristics i.e. Finite output resistance, body effect, sub threshold conduction, breakdown effects and temperature effects, MOSFET DC Analysis.

UNIT III: MOSFET AC circuit Analysis (6 hrs.)

MOSFET Common Source amplifier circuit, Load Line & Modes of operation, Small signal model of MOSFET and its parameters, Analysis of Common Source amplifier circuit. Introduction to Bi-CMOS technology, MOSFET internal capacitances and high frequency model.

UNIT IV: MOSFET Circuits (6 hrs.)

MOSFET as switch, diode/active resistor, Current sink and Current source circuits, current mirro circuits, Voltage references, Basic principle of band gap reference, CMOS Inverter as amplifier Active load, Current source and Push pull configurations.

UNIT V- Feedback amplifiers & Oscillators (6 hrs.)

Feedback Amplifiers: Four types of amplifiers. Feedback topologies. Effect of feedback or terminal characteristics of amplifiers. Examples of voltage series and Current series FET feedbacl amplifiers and their analysis.

Oscillators: Barkhausen criterion, stability with feedback. General form of LC oscillator. FET RC Phase Shift oscillator, Wein bridge oscillator, Hartley and Colpitts oscillators.

UNIT VI- Voltage Regulator & Switched Mode Power Supply (SMPS) (6 hrs.)

Voltage Regulator: Block diagram of an adjustable three terminal positive and negative regulators (317,337), Typical connection diagram, current boosting. Low drop out voltage regulators.

Switched Mode Power Supply (SMPS): Introduction to Switch Mode Power supply (SMPS), Block diagram of SMPS, Types of SMPS. Comparison of Linear Power supply and SMPS.

Syllabus contents required for competitive exams (GATE, UPSC, MPSC etc.)(*if complete unit is applicable then write only "unit 1/2/.." or write the contents from that unit*):1. NA.

Text Books:

- 1. Millman Halkias, "Integrated Electronics-Analog and Digital Circuits and Systems", Tata McGraw Hill, 2000.
- 2. Donald Neaman, "Electronic Circuit Analysis and Design",3rd Edition, Tata McGraw Hill

3. David A.Bell, "ElectronicDevicesandCircuits", 5thEdition, Oxford press

Reference Books:

- 1. R. L. Boylstad, L. Nashlesky, "Electronic Devices and circuitsTheory", 9thEdition, PrenticeHall of India, 2006.
- 2. Phillip E. Allen, Douglas R. Holberg, "CMOS Analog Circuit Design", Second Edition, Oxford.
- 3. K. R. Botkar, "Integrated Circuits", 5th Edition, Khanna Publication.

E-Books / E- Learning References:

 NPTEL Course "Analog Electronic Circuits" https://nptel.ac.in/courses/108/105/108105158/
 NPTEL Course on "Analog Circuits" https://nptel.ac.in/courses/108/101/108101094/

Program: Electronics and Telecommunication Engineering Second Year Electronics and Telecommunications (2022 Course) Digital Systems ETPCC304						
Course Code:	ETPCC304	Credit	3			
Contact Hours:	3 Hrs/week (L)	Type of Course:	Lecture			
Examination Scheme	In-sem. Evaluation 40 Marks	End-sem. Examination 60 Marks				

Pre-requisites:

• Number Systems, Logic Functions and Boolean algebra.

Course assessment methods/tools:

Sr. No.	Course assessment methods/tools	External/ Internal	Marks		
1.	In-Sem. Evaluation	Internal	40		
2.	End Semester Examination (Activity based)	External	60		
Course Ob	jectives				
1	To introduce the fundamental concepts asso	ociated with logic famil	ies.		
2	To analyze logic processes and implement circuits.	logical operations using	combinational logic		
3	To study the sequential logic circuits design both in synchronous and Asynchronous modes.				
4	To study fundamentals of VLSI.				
Course Ou	tcomes: Students will be able to				
304.1	Illustrate the digital logic families.				
304.2	Apply the concept of combinational logic design for implementing combinational circuits.				
304.3	Construct design steps for simple combinational circuits.				
304.4	Compare and convert different flip flops.				
304.5	Design synchronous and asynchronous sequential logic circuits.				
304.6	Simulate combinational and sequential circuits using HDL.				

Topics covered:

UNIT I: Introduction To Digital Electronics (7 hrs.)

Digital Logic families: Introduction, Specification terminology: Fan out, Unit load, Current and voltage parameters; TTL, ECL, MOS, CMOS logic families and their comparison, Tristate Logic CMOS logic: CMOS inverter, NAND, NOR gates, unconnected inputs, wired logic, open drain output.

Signed Binary number representation and Arithmetic: Sign Magnitude, 1's complement & 2's complement representation, unsigned Binary arithmetic (addition, subtraction, multiplication, and division), subtraction using 2's complement;

UNIT II: Combinational Logic Design (7 hrs.)

Definition of combinational logic, canonical forms, Standard representations for logic functions,kmap representation of logic functions (SOP and POS forms), minimization of logical functions for min-terms and max-terms (upto 4 variables), don't care conditions, Design Examples: Arithmetic Circuits, BCD to 7 segment decoder, Code converters.

Program: Electronics and Telecommunication Engineering

UNIT III: Combinational Circuits (5 hrs.) Design using SSI chips: Code converters, Half- Adder, Full Adder, Half Subtractor, Full Subtractor, n bit Binary adder.

Introduction to MSI chips: Multiplexer (IC 74153), Demultiplexer (IC 74138), Decoder (74238), Binary adder (IC 7483)

Design using MSI chips: BCD adder & subtractor using IC 7483, Implementation of logic Functions using IC 74153 & 74138.

UNIT IV: Sequential Logic Design (7 hrs.)

Introduction to sequential circuits: Difference between combinational circuits and sequential circuits; Memory element-latch & Flip-Flop.

Flip- Flops: Logic diagram, truth table & excitation table of SR, JK, D, T flip flops; Conversion from one FF to another, Study of flip flops with regard to asynchronous and synchronous, Preset & Clear, Master Slave configuration; Study of 7474, 7476 flip flop ICs.

UNIT V- Sequential Circuits (6 hrs.)

Application of flip-flops: Counters- asynchronous, synchronous and modulo n counters, study of 7490 modulus n counter ICs & their applications to implement mod counters; Registers- shi register types (SISO, SIPO, PISO & PIPO) & applications.

UNIT VI- Introduction to HDL (6 hrs.)

Library, Entity, Architecture, Modeling styles, Data objects, Concurrent and sequential statements, Design examples using HDL for basic combinational and sequential circuits.

Syllabus contents required for competitive exams (GATE, UPSC, MPSC etc.)(*if complete unit is applicable then write only "unit 1/2/.." or write the contents from that unit):***1.** NA.

Text Books:

- 1. R.P. Jain, "Modern Digital Electronics", Tata McGraw Hill Publication, 3 rd Edition.
- 2. Thomas Floyd, "Digital Electronics", 11th Edition.
- 3. M. Morris Mano, "Digital Logic and Computer Design", Prentice Hall of India, 4th Edition.
- 4. Taub and Schilling, "Digital Principles and Applications," TMH
- 5. J. Bhaskar, "A VHDL primer "Prentice-Hall of India, 3rd Edition.

Reference Books:

- 1. Anand Kumar, "Fundamentals of Digital Circuits", Prentice Hall of India, 1 st Edition.
- 2. J. F. Wakerly, "Digital Design- Principles and Practices," Pearson, 3 rd Edition.
- 3. M. M. Mano, "Digital Design," Prentice Hall India.

E- Books / E- Learning References:

- 1. NPTEL Course on "Digital Circuits" Link of the Course: https://nptel.ac.in/courses/108/105/
- 2. NPTEL Course on ""Digital Circuits & Systems"" Link of the Course: https://nptel.ac.in/courses/117/106/117106086/

Second Year Electronics and Telecommunications (2022 Course) Electronics Instrumentation and Measuring Systems ETPCC305

Course Code:	ETPCC305	Credit	3
Contact Hours:	3 Hrs/week (L)	Type of Course:	Lecture
Examination Scheme	In-sem. Evaluation 40 Marks	End-sem. Examination 60 Marks (Activity based)	

Pre-requisites:

• Basic knowledge Basic Electronics Engineering and Analog Electronics.

Course assessment methods/tools:

Sr. No.	Course assessment methods/tools	External/ Internal	Marks		
1.	In-Sem. Evaluation	Internal	40		
2.	End Semester Examination	External	60		
Course	Objectives				
1	To get fundamental knowledge of sensors and transducers and their operating principles, for measurement of mechanical parameters.				
2	To impart interdisciplinary knowledge regarding transducers.				
3	To provide a basic understanding of instrumentation and general Instrumentation systems.				
4	To make the students understand working principle and use of different types of measuring Instruments.				
5	To make the students understand use of ot timer/counter.	her display devices, reco	orders and		
6					
Course Outcomes: Students will be able to					
305.1	Apply and select sensors/transducers for	particular application.			
305.2	Describe the various types of sensors including thermal, mechanical, electrical, electromechanical and optical sensors.				
305.3	Select and use the instruments for measurement & analysis of basic electronic parameters.				
305.4	Understand the principles of different Oscilloscopes for specific applications.				
305.5	Identify the use of other display devices, measurement systems.	Identify the use of other display devices, recorders and timer/counter in measurement systems.			
305.6	Use the advanced measurement systems	for electronics parameter	er measurement.		

Topics covered:

UNIT I: Basics of Instrumentation and Measuring Systems (6 hrs.)

General Configuration and functional description of measuring instruments, static and dynami characteristics of instruments, errors in instrumentation systems, active and passive transducer and their classification. Units Systems, Statistical metrics in measurement systems, probability of errors, Calibration of measurement system.

UNIT II: Position, Motion, Pressure, Temperature and Flow Sensors (8 hrs.) Position and motion sensing: Potentiometers, LVDT, proximity sensors (inductive, capacitive and optical), absolute and incremental optical encoders. Pressure Sensors: Diaphragms, capsules, bellows and bourdon tube. Stress, Strain and Force: Strain

Program: Electronics and Telecommunication Engineering

Gauges and load cell. Temperature: Resistance temperature detectors, thermistors, thermocouples and pyrometers. Level: Ultrasonic, Capacitance probe type. Flow Rate: Pitotstatic tube, ultrasonic flow meters.

UNIT III: Electronics Measuring Instruments (8 hrs.)

Voltage & current measurement, Digital Voltmeter (DVM), types of DVM, Digital Multi meter, true r.m.s. voltmeter, Vector voltmeter, Impedance meter, Q-meter, Harmonic Distortion analyzers, Wave analyzer, Spectrum Analyzer, Logic Analyzer.

UNIT IV: Special purpose Oscilloscopes (8 hrs.)

Dual trace CRO, DSO, Sampling CRO, curve Tracer, Power Oscilloscopes, Delayed sweep CRO, Component Test, Z-modulation and X-Y mode operations, Measurements on oscilloscope, Oscilloscope accessories.

UNIT V- Display devices, Recorders and universal counter / Timer (6 hrs.)

LCD Display, LED/OLED Display, Plasma Display, X-Y Plotters, Strip Chart Recorders, Universal counter/ Timers (for time period, time interval, frequency, frequency ratio and pulse measurement), Frequency synthesis techniques, Synthesizers . Communication buses PC / instruments (EIA/TIA 232, 423, 422, 488), Internal & external acquisition cards.

UNIT VI- Advanced measurement systems. (8 hrs.)

Automatic Test Equipments, Microwave measurements using Network Analyzer, EMI/EMC test instruments, OTDR, Field Strength Meter, Industrial revolutions & their impact on Industrial Automation, Case study of Electronics Measurement Systems (e.g. DSO, Multi trace CRO, Spectrum Analyzer, Logic Analyzer).

Syllabus contents required for competitive exams (GATE, UPSC, MPSC etc.) *"units 1/2/3/4/5/6"*.

Text Books:

- 2. Oliver-Cage, "Electronic Measurements and Instrumentation", TMH.
- 3. Cooper & Helfrick, "Modern Electronics Instrumentation & Measurement Techniques", PHI, 3rd Edition.

Reference Books:

- 4. M.M.S. Anand, "Electronics Instruments and Instrumentation Technology", PHI, Eastern Economy Edition.
- 5. H. S. Kalsi, "Electronics Instrumentation" TMH, 2 nd Edition
- 6. Allen Moris, Reza Langari, "Measurement and Instrumentation Theory & Applications", Elsevier, Academic Press, 2 nd Edition

MOOC / NPTEL Courses:

- 1. NPTEL Course on "Electrical Measurements & Electronics Instruments "Link of the Course: https://nptel.ac.in/courses/108/105/108105153/
- 2. NPTEL Course on "Introduction to Industry 4.0 and Industrial Internet of Things" Link of the Course: <u>https://onlinecourses.nptel.ac.in/noc21_cs66/preview</u>

3. NPTEL Course on "Design Principles of RF and Microwave Filters and Amplifiers" Link of the Course: <u>https://nptel.ac.in/courses/117/105/117105138/</u>

Second Year Electronics and Telecommunications (2022 Course) Open source software: eSim ETOEC306				
Course Code:	ETOEC306	Credit	3	
Contact Hours:	3 Hrs./week (L)	Type of Course:	Lecture	
Examination Scheme	In-sem. Evaluation 40 Marks	End-sem. Examination 60 Marks		

Pre-requisites:

• Knowledge of Basic Electronics Engineering.

Course assessment methods/tools:

Sr. No.	Course assessment methods/tools	External/ Internal	Marks				
1.	In-Sem. Evaluation Internal 40						
2.	End Semester Examination	End Semester ExaminationExternal60					
Course Objectives							
1	To discuss open-source software eSim.						
2	To design electronic schematic diagrams using eSim						
3	To design PCB layout of Electronic circuits.						
Course Outcomes: Students will be able to							
306.1	306.1 Demonstrate features of eSim open source EDA tool.						
306.2	Design and Simulate schematic circuits in eSim.						
306.3	Apply footprints and set required parameters for PCB design.						
306.4	306.4 Design PCB layout and generate the Gerber file of any schematic circuit.						
Topics covered:							

UNIT I: Introduction to eSim-(6 hrs.)

Introduction and features of eSim, Launch eSim through terminal, Add components to circuit schematic, Connect the components using wires, Annotate the components, Generate spice netlist, Add source details and analysis, parameters, Convert Spice netlist to Ngspice format, Simulate the circuit, Understand the multi-meter functionality.

UNIT II: Simulation of Electronic circuits- (6 hrs.)

Creating a schematic, Assigning Values to components, Annotating the schematic, Performing Electrical Rules Check, Generating a netlist, Setting transient parameters, Converting KiCac netlist to ngspice netlist, Assigning Device models to the semiconductor components, Simulating the electronic circuit, Understanding the Python Plotting feature and ngspice terminal.

UNIT III: PCB Design-(6 hrs.) Mapping Components with footprints

Simulating a circuit, Removing sources, labels and plots from the schematic, Adding Connecto to schematic, Performing annotation, ERC, Launching Cvpcb, Segregating footprints accordin to their libraries, Viewing selected footprint, Assigning footprints to corresponding componen Saving the footprint association.

Setting Parameters for PCB designing

Program: Electronics and Telecommunication Engineering

Generating .net netlist file, Launching Pcbnew, Reading .net netlist, Moving footprints, Orienting footprints, Selecting working layer, Creating board outline, Setting design rules for DRC, Changing global track width, Verifying drill hole size, Verifying drill hole shape.

UNIT IV: PCB layout procedure -(6 hrs.)

Launching Pcbnew, Selecting working layer, Placing a track between two nodes, Adding a ground plane outline for the board, Adding a ground plane for the board, Placing Dimensions for the board Placing text on the board, Performing DRC, Generating Gerber files, Viewing createdGerber files.

E-Books / E- Learning References:

- 1. https://onlinecourses.swayam2.ac.in/aic20_sp59/preview
- 2. <u>https://spoken-tutorial.org</u>

List of Tutorials:

- 1. Installation of eSim in Linux and Windows
- 2. Schematic Creation and Simulation of electronic circuits.
- 3. Mapping Components with Footprints of electronic circuits.
- 4. Setting Parameters for PCB designing.
- 5. PCB layout of schematic circuit.

Second Year Electronics and Telecommunications (2022 Course) Analog Electronic Circuits Lab ETPCC307				
Course Code:	ETPCC307	Credit	1	
Contact Hours:	2 Hrs/week	Type of Course:	Practical	
Examination Scheme	Practical 50 Marks			

Pre-requisites:

• Basic knowledge of Semiconductor Physics and Basic Electronics Engineering.

Course assessment methods/tools:

 2.Build and test single-stage CS amplifier using M 3. Simulate frequency response of single stage C bandwidth. 4. Simulate Voltage-Series feedback amplifier and 	gurations and its analysis. nplifiers & oscillators. ance of voltage regulator ircuits. t for measurement the circuit. ent electronic circuits.				
1To brief about Semiconductor devices J parameters & applications.2To discuss MOSFET DC and AC Confi3To explain various MOSFET Circuits4To introduce Concepts of feedback in a 55To impart skills to evaluate the performCourse Outcomes: Students will be able to307.1Design and analyze analog electronic of 307.2307.1Design and analyze analog electronic of 307.3307.1Design and test the performance of a07.3307.2Make use of the appropriate instrument a07.3307.4Explain the working principle of differ List of Experiments: (Any 8)1.Design, build and test JFET/MOSFET voltage 2.Build and test single-stage CS amplifier using M 3. Simulate frequency response of single stage C bandwidth.4. Simulate Voltage-Series feedback amplifier and	gurations and its analysis. nplifiers & oscillators. ance of voltage regulator ircuits. t for measurement the circuit. ent electronic circuits.				
parameters & applications.2To discuss MOSFET DC and AC Confi3To explain various MOSFET Circuits4To introduce Concepts of feedback in a5To impart skills to evaluate the performCourse Outcomes: Students will be able to307.1Design and analyze analog electronic of307.2Make use of the appropriate instrument307.3Implement and test the performance of307.4Explain the working principle of differList of Experiments: (Any 8)1.Design, build and test JFET/MOSFET voltage2.Build and test single-stage CS amplifier using M3.Simulate frequency response of single stage Cbandwidth.4. Simulate Voltage-Series feedback amplifier and	gurations and its analysis. nplifiers & oscillators. ance of voltage regulator ircuits. t for measurement the circuit. ent electronic circuits.				
 To explain various MOSFET Circuits To introduce Concepts of feedback in a To impart skills to evaluate the perform Course Outcomes: Students will be able to 307.1 Design and analyze analog electronic of 307.2 Make use of the appropriate instrument 307.3 Implement and test the performance of 307.4 Explain the working principle of differ List of Experiments: (Any 8) 1.Design, build and test JFET/MOSFET voltage 2.Build and test single-stage CS amplifier using M 3. Simulate frequency response of single stage C bandwidth. 4. Simulate Voltage-Series feedback amplifier and 	nplifiers & oscillators. ance of voltage regulator frecuits. t for measurement the circuit. ent electronic circuits.	t			
 To introduce Concepts of feedback in a To impart skills to evaluate the perform Course Outcomes: Students will be able to 307.1 Design and analyze analog electronic of 307.2 Make use of the appropriate instrument 307.3 Implement and test the performance of 307.4 Explain the working principle of differ List of Experiments: (Any 8) 1.Design, build and test JFET/MOSFET voltage 2.Build and test single-stage CS amplifier using M 3. Simulate frequency response of single stage O bandwidth. 4. Simulate Voltage-Series feedback amplifier and 	ance of voltage regulator vircuits. t for measurement t the circuit. ent electronic circuits.	t			
 5 To impart skills to evaluate the perform Course Outcomes: Students will be able to 307.1 Design and analyze analog electronic of 307.2 Make use of the appropriate instrument 307.3 Implement and test the performance of 307.4 Explain the working principle of differ List of Experiments: (Any 8) 1.Design, build and test JFET/MOSFET voltage 2.Build and test single-stage CS amplifier using M 3. Simulate frequency response of single stage C bandwidth. 4. Simulate Voltage-Series feedback amplifier and 	ance of voltage regulator vircuits. t for measurement t the circuit. ent electronic circuits.	t			
Course Outcomes: Students will be able to307.1Design and analyze analog electronic of307.2Make use of the appropriate instrument307.3Implement and test the performance of307.4Explain the working principle of differList of Experiments: (Any 8)1.Design, build and test JFET/MOSFET voltage2.Build and test single-stage CS amplifier using M3. Simulate frequency response of single stage Obandwidth.4. Simulate Voltage-Series feedback amplifier and	circuits. t for measurement the circuit. ent electronic circuits.	t			
307.1Design and analyze analog electronic of307.2Make use of the appropriate instrument307.3Implement and test the performance of307.4Explain the working principle of differList of Experiments: (Any 8)1.Design, build and test JFET/MOSFET voltage2.Build and test single-stage CS amplifier using M3. Simulate frequency response of single stage Cbandwidth.4. Simulate Voltage-Series feedback amplifier and	t for measurement ⁵ the circuit. ent electronic circuits.	t			
 307.2 Make use of the appropriate instrument 307.3 Implement and test the performance of 307.4 Explain the working principle of differ List of Experiments: (Any 8) 1.Design, build and test JFET/MOSFET voltage 2.Build and test single-stage CS amplifier using M 3. Simulate frequency response of single stage C bandwidth. 4. Simulate Voltage-Series feedback amplifier and 	t for measurement ⁵ the circuit. ent electronic circuits.	t			
 307.3 Implement and test the performance of 307.4 Explain the working principle of differ List of Experiments: (Any 8) 1.Design, build and test JFET/MOSFET voltage 2.Build and test single-stage CS amplifier using M 3. Simulate frequency response of single stage C bandwidth. 4. Simulate Voltage-Series feedback amplifier and 	the circuit. ent electronic circuits.	t			
 307.4 Explain the working principle of differ List of Experiments: (Any 8) 1.Design, build and test JFET/MOSFET voltage 2.Build and test single-stage CS amplifier using M 3. Simulate frequency response of single stage C bandwidth. 4. Simulate Voltage-Series feedback amplifier and 	ent electronic circuits.	t			
List of Experiments: (Any 8) 1.Design, build and test JFET/MOSFET voltage 2.Build and test single-stage CS amplifier using M 3. Simulate frequency response of single stage C bandwidth. 4. Simulate Voltage-Series feedback amplifier and		t			
 Design, build and test JFET/MOSFET voltage Build and test single-stage CS amplifier using M Simulate frequency response of single stage C bandwidth. Simulate Voltage-Series feedback amplifier and 	livider DC biasing circui	t			
 2.Build and test single-stage CS amplifier using M 3. Simulate frequency response of single stage C bandwidth. 4. Simulate Voltage-Series feedback amplifier and 	1.Design, build and test JFET/MOSFET voltage divider DC biasing circuit.				
bandwidth.4. Simulate Voltage-Series feedback amplifier and	2.Build and test single-stage CS amplifier using MOSFET. Calculate Ri, Ro and Av.				
bandwidth.4. Simulate Voltage-Series feedback amplifier and	3. Simulate frequency response of single stage CS amplifier (use same circuit) and find the				
5. Implement current series feedback amplifier and	4. Simulate Voltage-Series feedback amplifier and calculate Rif, Rof, Avf and Bandwidth.				
	5. Implement current series feedback amplifier and find Rif, Rof, Gmf and Bandwidth.				
6. Simulate LC oscillator using FET.					
7. Implement Wein bridge /RC phase shift oscillator using FET/MOSFET.					
8. Simulate MOSFET as a CMOS Inverter.					
9. Build and test MOSFET as a switch.					
10. Design and implement an adjustable voltage re	10. Design and implement an adjustable voltage regulator using three terminals voltage regulator				
IC.					

Second Year Electronics and Telecommunications (2022 Course) Digital Systems Lab ETPCC 308

Course Code:	ETPCC 308	Credit	1		
Contact Hours:	2 Hrs/week (PR)	Type of Course:	Practical		
Examination Scheme	Practical 50 Marks				

Pre-requisites:

• Basic knowledge of IC.

Course assessment methods/tools:

Course Obje 1 To a logic 2 To st mode 3 To si Course Outc 308.1 Des 308.2 Des 308.2 Des 308.3 Wr List of Exper Group A (So 1. Verify four (Refer D 2. Study of IC- a. Desig b. Desig Table. 3. Study of IC- a. Desig b. Desig Gray). 4. Study of IC- a. Desig	Practical ectives analyze logic processes and implem ic circuits.	External			
1To a logic2To st mode3To si Course Outce308.1Des308.2Des308.3WrList of Exper Group A (So1. Verify four (Refer D2. Study of IC- a. Desig b. Desig Table.3. Study of IC- a. Desig b. Desig Gray).4. Study of IC- a. Desig	analyze logic processes and implem		50		
2logic mode2To st mode3To si Course Outc308.1Des308.2Des308.3WrList of Exper Group A (So1. Verify four (Refer D)2. Study of IC- a. Desig b. Desig Table.3. Study of IC- a. Desig b. Desig Gray).4. Study of IC- a. Desig b. Desig Gray).	• • • •				
2mode3To siCourse Outc308.1Des308.2Des308.3WrList of ExperGroup A (So1. Verify four (Refer D2. Study of IC- a. Desig b. Desig 	c circuits.	nent logical operations u	sing combinational		
Course Outc 308.1 Des 308.2 Des 308.3 Wr List of Exper Group A (So 1. Verify four (Refer D 2. Study of IC- a. Desig b. Desig Table. 3. Study of IC- a. Desig b. Desig Gray). 4. Study of IC- a. Desig	To study the sequential logic circuits design both in synchronous and Asynchronous modes.				
308.1Des308.2Des308.3WrList of ExperGroup A (So1. Verify four (Refer D2. Study of IC- a. Desig b. Desig Table.3. Study of IC- a. Desig b. Desig Gray).4. Study of IC- a. Desig Gray).	simulate HDL code.				
 308.2 Des 308.3 Wr List of Exper Group A (So 1. Verify four (Refer D 2. Study of IC- a. Desig b. Desig b. Desig c. Study of IC- a. Desig b. Desig d. Study of IC- a. Desig d. Study of IC- a. Desig 	comes: Students will be able to				
 308.3 Wr. List of Experience Group A (Social Content of Conte	esign and implement the digital circui	t using combinational log	gic.		
List of Exper Group A (So 1. Verify four (Refer D 2. Study of IC- a. Desig b. Desig Table. 3. Study of IC- a. Desig b. Desig Gray). 4. Study of IC- a. Desig	esign and implement the digital circui	t using sequential logic.			
Group A (So 1. Verify four (Refer D 2. Study of IC- a. Desig b. Desig Table. 3. Study of IC- a. Desig b. Desig Gray). 4. Study of IC- a. Desig	rite and simulate combinational and s	sequential circuit using H	DL.		
 Verify four (Refer D Study of IC- a. Desig b. Desig Table. Study of IC- a. Desig b. Desig Gray). Study of IC- a. Desig 	List of Experiments:				
(Refer D 2. Study of IC- a. Desig b. Desig Table. 3. Study of IC- a. Desig b. Desig Gray). 4. Study of IC- a. Desig	Group A (Solve any 6)				
b. Desig Table. 3. Study of IC- a. Desig b. Desig Gray). 4. Study of IC- a. Desig	 Verify four voltage and current parameters for TTL and CMOS (IC 74LSXX, 74HCXX), (Refer Data-Sheet). Study of IC-74LS153 as a Multiplexer: (Refer Data-Sheet). 				
 3. Study of IC- a. Desig b. Desig Gray). 4. Study of IC- a. Desig 	 a. Design and Implement 8:1 MUX using IC-74LS153 & Verify its Truth Table. b. Design & Implement the given 4 variable function using IC74LS153. Verify its Truth-Table. 				
4. Study of IC- a. Desig	 3. Study of IC-74LS138 as a Demultiplexer / Decoder: (Refer Data-Sheet) a. Design and Implement full adder and subtractor function using IC-74LS138. b. Design & Implement 3-bit code converter using IC-74LS138. (Gray to Binary/Binary to 				
	Gray). 4. Study of IC-74LS83 as a BCD adder: (Refer Data-Sheet). a. Design and Implement 1-digit BCD adder usingIC-74LS83. b. Design and Implement 4-bit Binary sub tractor using IC-74LS83. OR				
 4. Study of IC-74LS85 as a magnitude comparator: (Refer Data-Sheet) a. Design and Implement 4-bit Comparator. b. Design and Implement 8-bit Comparator. 5. Study of code converter a. Design and Implement code converter (Binary to Grey or Grey to Binary) 6. Study of Counter ICs (74LS90/74LS93): (Refer Data-Sheet) a. Design and Implement MOD-N and MOD-NN using IC-74LS90 and draw Timing 					

b, Design and implement Mo4OD-N and MOD NN using IC 74LS95 and draw timing diagram **OR**

6. Study of synchronous counter:

a. Design & Implement 4-bit Up/down Counter and MOD-N Up/down Counter using IC74HC191 / IC74HC193. Draw Timing Diagram.

7. Study of Shift Register:

Design and Implement 4-bit right shift and left shift register using D-flip flop.

OR

- 7. Study of Shift Register (74HC194 / 74LS95):
 - a. Design and Implement Pulse train generator using IC-74HC194 / IC74LS95 (Use right shift/ left shift).
 - b. Design and Implement 4-bit Ring Counter/ Twisted ring Counter using shift registers IC 74HC194 / IC74LS95.

Group B (Solve any 2)

8. Write a HDL code for half adder and simulate it.

OR

8. Write a HDL code for full adder and simulate it.

9. Design a D-FF using HDL and obtain simulation waveform.

OR

9. Design a T-FF using HDL and obtain simulation waveform.

10. Design a SR-FF using HDL and obtain simulation waveform.

OR

 $10. \ {\rm Design} \ {\rm a} \ {\rm JK-FF} \ {\rm using} \ {\rm HDL} \ {\rm and} \ {\rm obtain} \ {\rm simulation} \ {\rm waveform}.$

Program: Electronics and Telecommunication Engineering

Second Year Electronics and Telecommunications (2022 Course) Electronics Instrumentation and Measuring Systems Lab ETPCC309				
Course Code:	ETPCC309	Credit	1	
Contact Hours:	2 Hrs/week (P)	Type of Course:	Practical	
Examination Scheme	Term Work. Evaluation 50 Marks			

Pre-requisites:

• Basic knowledge Basic Electronics Engineering and Analog Electronics.

Course assessment methods/tools:

Sr. No.	Course assessment methods/tools:	External/ Internal	Marks		
1.	Term Work	Internal	50		
	Objectives	Internal	50		
Course	objectives				
1	To get fundamental knowledge of transductemperature.	cers used for measureme	ent of weight and		
2	To provide treatment for random error by statistical analysis using 6 and ¹ / ₂ digit DMM.				
3	To make the students understand RMS, tr	ue RMS value and Q fac	ctor measurements.		
4	To make the students aware about differe	nt analyzers.			
5	To make the students understand different	oscilloscopes.			
6	To make the students understand advanced	d measurement systems			
Course	Outcomes: Students will be able to				
309.1	Apply and select sensors/transducers for	particular application			
309.1	11 7				
<u> </u>	Select and use the instruments for measurement & analysis of random error. Understand the principles of different meters for specific applications.				
	Understand the principles of different analyzers for specific applications.				
309.4					
309.5	Understand the principles of different Oscilloscopes for specific applications.				
309.6	309.6 Use the advanced measurement systems for electronics parameter measurement.				
List of Laboratory Experiments					
1. We	eight measurement using load cell and strai	n gauges.			
2. Temperature measurement. (RTD signal conditioning with bridge circuit, instrumentation amplifier, ADC and microcontroller)					
3. Statistical analysis of measurements, probable error, calibration of meters					
4. Me	4. Measurement of RMS of common and true RMS of complex waveforms.				
5. Measurement of L, C, R, Q and Dissipation Factor using Q –Meter.					

Program: Electronics and Telecommunication Engineering

- 6. Measurement of Total Harmonic Distortion contained by output of amplifier/ inverter.
- 7. Measurements of Time period, Time Interval, Frequency and frequency ratio using universal counter/ Timer.
- 8. Measurements using Digital Storage Oscilloscope, different modes of DSO, capturing transients and analysis of waveforms.
- 9. Measurement using spectrum analyzer by observing spectrum of AM and FM waveforms for different modulation indices.
- 10. Case study of measurement system using Vector Network Analyzer/software package like LABVIEW or other software or virtual lab.

Virtual Lab Courses:

- 1 https://iitg.vlabs.ac.in/Understanding_The_%20Basic_Functions_Of_An%20Oscilloscope.htm 1
- 2 <u>https://www.iitk.ac.in/mimt_lab/vlab/index.php?pg=smith</u>
- 3. <u>https://www.iitk.ac.in/mimt_lab/vlab/index.php?pg=reflection_coefficients</u>

Second Year Electronics and Telecommunications (2022 Course) Vedic Mathematics ETHSM 310					
Course Code:	ETHSM310	Credit	1		
Contact Hours:	1 Hrs/week (L)	Type of Course:	Lecture		
Examination Scheme	TW Evaluation 25 Marks				

Pre-requisites: Vedic Sutras, Vedic Sub Sutras

Course assessment methods/tools:

Sr. No.	Course assessment methods/tools	External/ Internal	Marks					
1.	Term work Evaluation	Internal	25					
Course	Course Objectives							
1	1 To develop the understanding of techniques/ sutras to solve mathematical arithmetic's in easy and faster way and use these techniques in various competitive examinations.							
2	To improve speed and efficiency to solve e problems.	even the most complex r	nathematical					
3	To remove the phobia about mathematics in the	e minds of students.						
4	To help students to have better command over confidence level towards the subject.	mathematical concepts an	nd boost up their self-					
Course	Outcomes: Students will be able to							
310.1	Apply Vedic Mathematics techniques to mathematical calculations like multiplic cubes,LCM,HCF.							
310.2 310.3	Equations, Factorization of a Cubic Polynomial.							
Topics	covered:							
Introduct	: Basic level (4 hrs.) ion of Vedic Mathematics, Multiplication, S Factor of Polynomials, Multiplication of Po	-						
Linear E	I: Intermediate Level (4hrs.) quations, Quadratic Equations, Factorization d Calendar.	n of a Cubic Polynomial	, Magic squares,					
	II: Advance Level (3 hrs.) inant, Coordinate Geometry, Differentiation	, Integration, Trigonom	etry.					
-	contents required for competitive exams oplicable then write only "unit 1/2/" or wr							

Textbooks

- **1.** Advanced Vedic Mathematics, Rajesh Kumar Thakur.
- 2. Vedic Mathematics Made Easy, Dhaval Bathia
- 3. VEDIC MATHEMATICS For Students: LEVEL 1 OF 5 SERIES, by Nava Vision

Reference books

- 1. Sri Bharatikrishna Tirthaji,"Vedic Mathematics", Published by Motilal Banarsidass, 1965.ISBN 81-208-0163-6.
- 2. Williams K.R. "Discover Vedic Mathematics" Vedic Mathematics Research Group, 1984.ISBN 1-869932-01-3.
- 3. Wiliams K.R. and M.Gaskell "The Cosmic Calculator". Motilal Banarsidass, 2002. ISBN 81-208-1871-7.
- 4. Nicholas A.P., Williams, J. Pickles. "Vertically and Crosswise". Inspiration books, 1984.ISBN 1-902517-03-2.

Second Year Electronics and Telecommunications (2022 Course) Business Accounting for Engineering (ETHSM 401)						
Course	Code:	ETHSM401	Credit	t	2	
Contact	Hours:	2 Hrs./week (L)	Туре	of Course:	Lecture	
Examina Scheme	ation	25 Marks TW 25 Marks OR				
Pre-requi	isites: Know	eledge of Basic Mathema	atics			
e assessn	nent meth	ods/tools:				
Sr. No.		e assessment methods	/tools	External/ Inte		
1.	Term wor	e assessment methods, k Evaluation	/tools	Internal	25	
1. 2.	Term wor Oral Exa	e assessment methods, k Evaluation	/tools			
1. 2.	Term wor	e assessment methods, k Evaluation	/tools	Internal	25	
1. 2.	Term wor Oral Exa Objectives	e assessment methods, k Evaluation		Internal External	25 25	
1. 2. Course 1.	Term wor Oral Exa Objectives To explain t	e assessment methods k Evaluation mination	g, importa	Internal External	25 25	
1. 2. Course 1. 2	Term wor Oral Exa Objectives To explain t To Interpret	e assessment methods k Evaluation mination he concept of accounting methods of journal and I	g, importa	Internal External	25 25	
1. 2. Course	Term wor Oral Exa Objectives To explain t To Interpret To explain t	e assessment methods ik Evaluation mination he concept of accounting methods of journal and I he Trading Account .	g, importa Ledger.	Internal External nce and types of ac	25 25	
1. 2. Course 1. 2	Term wor Oral Exa Objectives To explain t To Interpret To explain t To discuss t	e assessment methods k Evaluation mination he concept of accounting methods of journal and I	g, importa Ledger. accounting	Internal External nce and types of ac	25 25	

6 To explain the method of Costing

Course Outcomes: Students will be able to

- 401.1 Identify the key elements of the concept of Accounting in financial statements .
- 401.2 Identify the types of Cash Books .
- 401.3 Analyze the principles of preparing Accounts.
- 401.4 Summarize the concepts of Management Accounting.
- 401.5 Identify the importance of Cost Accounting.
- 401.6 Make use of analytical classification of cost

Topics covered:

UNIT I: Introduction to Accounting: (4 hrs.)

Introduction of Accounting, Importance of Accounting, Functions of Accounting, Types & Principles of Accounting

UNIT II: Accounting Transactions (4hrs.)

Introduction to Journal & Ledger, Distinction Between Journal and Ledger, Cash Book, Subsidiary Books, Kinds of Subsidiary Books, Type of Discounts

UNIT III: Trail Balance and Accounts: (4 hrs.)

Introduction to Trail Balance, Methods of Preparing Trail Balance, Trading Account., Preparation of Trading Account, Profit and Loss Account, Preparation of Profit and Loss Account, Balance Sheet

UNIT IV- Management Accounting (4 hrs.)

Nature, Functions and Scope of Management Accounting, Financial Analysis and Planning.

UNIT V- Cost Accounting (4 hrs.)

Introduction of Cost Accounting, Need for Cost Accounting, Growth and Development of Cost Accounting, Importance of Cost Accounting, Financial Accounting v/s Cost Accounting.

UNIT VI- Elements of Costs (4 hrs.)

Introduction to Elements of Cost, Classification of Cost, Functions, Capital and Revenue.

Text Books:

- [T1] Fundamentals of Accounting & Financial Analysis: By Anil Chowdhary (Pearson Education).
- [T2] Financial Accounting For Management: By Dr. S. N. Maheshwari (Vikas Publishing House)
- [T3] Accounting Made Easy By Rajesh Agarwal & R Srinivasan (Tata McGraw –Hill).
- [T4] Principles of Accountancy N.Vinayakam, P.L.Mani, K.L. Nagarajan S.Chand & Company Ltd., New Delhi
- [T5] Accounting for Management, N.P.Srinivasan and M.Sakthivel Murugan, S.Chnad & Company
 - Ltd., New Delhi
- [T6] Cost Accounting, R.S.N Pillai and V.Bagavathi, "S.Chand and Company Ltd., New Delhi.Edn.2004 S.P.Iyyangar
- [T7] Cost Accounting Principles and Practice, Sultan Chnad, New Delhi. 2005

Reference Books:

- [R1] Financial accounting: By Jane Reimers (Pearson Education)
- [R2] Financial Accounting For Management: By Amrish Gupta (Pearson Education).
- [R3] Double entry book Keeping, T.S.Grewal, Sultan Chnad & Sons, New Delhi
- [R4] Management Accounting, Sharma and Gupta, Kalyani Publishers, New Delhi

E-Books / E-Learning References:

1. NPTEL Course on Decision making using financial accounting

Link of the Course: https://nptel.ac.in/courses/110106135

2. NPTEL Course on Financial Accounting

Link of the Course: https://archive.nptel.ac.in/courses/110/101/110101131

Second Year Electronics and Telecommunications (2022 Course) Integrated Circuits (ETPCCC402)							
Course Code:	ETPCC402	Credit	3				
Contact Hours:	3 Hrs/week (L)	Type of Course:	Lecture				
Examination Scheme							

Pre-requisites:

Basic knowledge of Analog Electronic Circuits.

Course assessment methods/tools:

Sr. No.		External/ Internal	Marks		
1.	In-Sem. Evaluation Internal 40				
2.	End Semester Examination	External	60		
Course	Objectives				
1	To understand Op amp Fundamentals.				
2	To know linear and nonlinear applications	of operational amplifier	ICs.		
3	To understand various converters using op	amp			
4	To understand Filters using op amp				
5	To study and use different special purpose	ICs			
Course	Outcomes: Students will be able to				
402.1	402.1 Identify internal structure and characteristics of op-amp				
402.2	402.2 Explain and analyze Linear applications of op-amp				
402.3	402.3 Explain and analyze Non-linear applications of op-amp				
402.4	402.4 Design, build and test op-amp based ADC and DAC circuits				
402.5					
402.6	Apply functionalities of PLL and Timer I	C with their application	S		
Topics	covered:				

UNIT I: Op Amp Fundamentals (6 hrs.)

Block diagram of OP-AMP, Explanations of each block, Differential Amplifier configurations, Differential amplifier analysis, Need and types of level shifter, ideal parameters and practical parameters of OP-AMP and their comparison, current mirror circuits.

UNIT II: Linear Applications of Op Amp (6 hrs.)

Inverting and Non-inverting amplifier, voltage follower, voltage scaling, difference amplifier, Ideal integrator, errors in ideal integrator, practical integrator, frequency response of practical integrator, applications of integrator, Ideal differentiator, errors in ideal differentiator, practical differentiator, frequency response of practical differentiator, applications of differentiator Requirements of Instrumentation amplifier, 3 OP-AMP Instrumentation amplifier Instrumentation amplifier applications.

UNIT III: Non Linear Applications of OP amp (6 hrs.)

Comparator, characteristics of comparator, applications of comparator, Schmitt trigger (symmetrical/asymmetrical), Square wave generator, triangular wave generator, Problems in basic rectifier, Need of precision rectifier, Half wave, Full wave precision rectifiers, peak

detectors, sample and hold circuits.

UNIT IV: Converters (6 hrs.)

and F-V converter, I-V and V-I converter, Current amplifier, DAC, types of DAC, characteristics, specifications, advantages and disadvantages of each type of DAC, ADC, types of ADC, characteristics, specifications, advantages and disadvantages of each type of ADC.

UNIT V: Filters s (6 hrs.)

Design and frequency scaling of First order and second order Active LP, HP, BP and wide and narrow band BR Butterworth filters and notch filter. All pass filters

UNIT VI: Special Purpose ICs (6 hrs.)

The 555 Timer IC, Internal schematic, Astable and monostable modes of operation Phase Locked Loop IC 565, Block Diagram, Characteristics, phase detectors, Details of PLL IC 565 Applications, Typical circuits., Voltage Controlled Oscillator Basic Operation

Text Books:

1. Ramakant A Gayakwad, "Op-Amps and Linear Integrated Circuits", PHI, 4th edition 2. D.Roy Choudhary, Shail Jain, "Linear Integrated Circuits", New Age Int. press

Reference Books:

- 1. Sergio Franco, "Design with Operational Amplifiers and Analog Integrated Circuits", Tata McGraw Hill., Third Edition
- 2. G.B.Clayton, "Operational Amplifiers", International Edition.
- 3. K. R. Botkar, "Integrated Circuits", 5th Edition, Khanna Publication.

E- Books / E- Learning References:

1. NPTEL Course "Integrated Circuits" <u>https://nptel.ac.in/courses/108108111</u>

Second Year Electronics and Telecommunications (2022 Course) Data Structures (ETPCC 403)					
Course Code:	ETPCC 403	Credit	3		
Contact Hours:	3 Hrs/week (L)	Type of Course:	Lecture		
Examination Scheme	In-sem. Evaluation 40 Marks	End-sem. Examination 60 Marks (Activity Based)			

Pre-requisites:

• Basic knowledge of Python.

Course assessment methods/tools:

Sr. No.	Course assessment methods/tools	External/ Internal	Marks					
1.	In-Sem. Evaluation	Internal	40					
2.	End Semester Examination External 60							
Course	Course Objectives							
1	To learn different sorting and searching alg	gorithms and their analy	/sis.					
2	To learn linear data structures: Stack and	Queue, Linked List and	their applications.					
3	To learn nonlinear data structures: Tree, G	raph and their applicati	ons.					
4	To study the systematic ways of solving palarge amount of data.	roblem, various method	s of organizing					
5	To solve problems using data structures su graph and writing programs.	ich as binary tree, binary	search tree, and					
Course	Outcomes: Students will be able to							
403.1	Demonstrate various operations on data struc	ctures in python						
403.2	Implement sorting and searching algorithms and calculate their complexity.							
403.3	Develop applications of stack and queue using array.							
403.4	Demonstrate applicability of Linked List.							
403.5								
403.6	Apply the knowledge of graph for solving th algorithm.	e problems of spanning tr	ee and shortest path					
Topics	covered:							

Topics covered:

UNIT I: ARRAYS (6 hrs.)

Basics of array, Array as abstract Data Type, Implementing Arrays, and

Two Dimensional Array: implementation Of 2 Dimensional arrays,

Matrix: Implementation of matrix, Matrix operation like addition, subtraction, scaling. Multiplication. Transpose.

UNIT II: SEARCHING AND SORTING ALGORITHMS (6 hrs.)

Algorithms: Analysis of Iterative and Recursive algorithms, Space & Time complexity, Asymptotic notation- Big-O, Theta and Omega notations.

Searching methods: Linear, Binary and Fibonacci Search.

Sorting methods: Bubble, Insertion, Selection, Merge, and Quick Sort.

UNIT III: STACK AND QUEUES (6 hrs.)

Stack: Concept, Basic Stack operations, Array representation of stack, Stack as ADT, Stack Applications: Reversing data, Arithmetic expressions conversion and evaluation.Queue: Concept, Queue operations, Array representation of queue, Queue as ADT, Circular queue, Priority Queue, Applications of queue.

UNIT IV: LINKED LIST (6 hrs.)

Concept of linked organization, Singly Linked List, Stack using linked list, Queue using linked list, Doubly Linked List, Circular Linked List, Linked list as ADT.

UNIT V- TREES (6 hrs.)

Introduction to trees: Basic Tree Concepts. **Binary Trees:** Concept & Terminologies, Representation of Binary Tree in memory, Traversing a binary tree. **Binary Search Trees (BST):** Basic Concepts, BST operations, Concept of Threaded Binary Search Tree, AVL Tree: Basic concepts and rotations of a Tree.

UNIT VI- GRAPHS (6 hrs.)

Graph: Basic Concepts & terminology. **Representation of graphs:** Adjacency matrix, Adjacency list. **Operations on graph:** Traversing a graph. **Spanning trees:** Minimum Spanning tree- Kruskal's Algorithm, Prim's Algorithm and Dijkstra's Shortest Path Algorithm.

Syllabus contents required for competitive exams (GATE, UPSC, MPSC etc.)(*if complete unit is applicable then write only "unit 1/2/.." or write the contents from that unit):***1.** NA.

Text Books:

- 1. Rance D. Necaise, Data Structures and Algorithms Using Python by, John Wiley and Sons. ISSN: 9788126562169
- 2. Reema Thareja, "Python Programming Using Problem Solving Approach", Oxford University Press, ISBN 13: 978-0-19-948017-6.
- 3. R. Nageswara Rao, "Core Python Programming", Dreamtech Press; Second edition ISBN-10: 938605230X, ISBN-13: 978-9386052308 ASIN: B07BFSR3LL

Reference Books:

- 4. Narasimha Karumanchi, Data Structures And Algorithms Made Easy, Career Monk Publications
- 5. Y Daniel Liang, "Introduction to Programming using Python", Pearson
- 6. Benjamin Baka, David Julian, "Python Data Structures and Algorithms", Packt Publishers, 2017

Second Year Electronics and Telecommunications (2022 Course) Signals and systems (ETPCC404)					
Course Code:	ETPCC404	Credit	3		
Contact Hours:	3 Hrs/week (L)	Type of Course:	Lecture		
Examination Scheme	In-sem. Evaluation 40 Marks	End-sem. Examination 60 Marks			
Scheme 40 Marks 60 Marks Pre-requisites: • Integration, differentiation, matrix operations .					

Course assessment methods/tools:

Sr. No.	Course a methods	ssessment /tools	External/ Internal	Marks	
1.	In-Sem. Eva	aluation	Internal	40	
2.	End Semest	er Examination	External	60	
Course	Objectives				
1	To understand	the mathematical repre	esentation of continuous and discrete t	ime signals and systems	
2	To classify sig	gnals and systems into d	lifferent categories.		
3	To analyze Li	near Time Invariant (LT	ΓI) systems in time and transform don	nains.	
4	To understand	d concepts of correlation	n, spectral density		
Course	e Outcomes:	Students will be able	to		
404.1		Identify, classify basi	c signals and perform operations on	signals.	
404.2	2 Identify, Classify the systems based on their properties in terms of input output relation , impulse response and to determine the convolution between to signals.				
404.3	Analyze and resolve the signals in frequency domain using Fourier Transform.				
404.4	.4 Resolve the signals in complex frequency domain using Laplace and Z Transform				
404.5		Apply and analyze th	e LTI systems using Laplace and Z	Transforms.	
404.6	404.6 Determine correlation and spectral density between signals.				
Topic	s covered:				

UNIT I: Introduction to Signals & Systems (6 hrs.)

Introduction, Graphical, Functional, Tabular and Sequence representation of Continuous and Discrete time signals. Basics of Elementary signals: Unit step, Unit ramp, Unit parabolic, Impulse, Sinusoidal, Rea exponential, Complex exponential, Rectangular pulse, Triangular, Signum, Sinc and Gaussian function.

Operations on signals: time shifting, time reversal, time scaling, amplitude scaling, signal addition, subtraction, signal multiplication. Communication, control system and Signal processing examples.

Classification of signals: Deterministic, Random, periodic, Non periodic, Energy, Power, Causal, Non Causal, Even and odd signal.

Systems:

Introduction, Classification of Systems: Lumped Parameter and Distributed Parameter System, static and

dynamic systems, causal and non-causal systems, Linear and Non-linear systems, time variant and time invariant systems, stable and unstable systems, invertible and non- invertible systems

UNIT II: Time domain representation of LTI System (6 hrs.)

Input-output relation, definition of impulse response, convolution sum, convolution integral, computation of convolution integral using graphical method for unit step to unit step, unit step to exponential ,exponential to exponential, unit step to rectangular and rectangular to rectangular only

Computation of convolution sum. Properties of convolution. System interconnection, system properties in terms of impulse response, step response in terms of impulse response

UNIT III: Fourier Transform (6 hrs.)

Fourier Transform (FT) representation of aperiodic CT signals, Dirichlet condition for existence of Fourier transform, evaluation of magnitude and phase response, FT of standard CT signals, Properties and their significance, Interplay between time and frequency domain using sinc and rectangular signals, Fourier Transform for periodic signals.

UNIT IV: Laplace transform (6 hrs.)

Definition of Laplace Transform (LT), Limitations of Fourier transform and need of Laplace transform, ROC, Properties of ROC, Laplace transform of standard periodic and aperiodic functions, properties of Laplace transform and their significance, Laplace transform evaluation using properties, Inverse Laplace transform based on partial fraction expansion, stability considerations in S domain, Application of Laplace transforms to the LTI system analysis.

UNIT V- z-transform (6 hrs.)

Need for z-transform, relation between Laplace transform and z transform, relation between Fourier transform and z transform, Concept of ROC and Properties of ROC and z transform, Relation between pole locations and time domain behavior, causality and stability considerations for LTI systems, Solution of difference equations using z transform.

UNIT VI- Correlation and Spectral Density (6 hrs.)

Definition of Correlation and Spectral Density, correlogrm, analogy between correlation, covariance and convolution, conceptual basis, auto-correlation, cross correlation, energy/power spectral density, properties of correlation and spectral density, inter relation between correlation and spectral density.

Text Books:

- 1. Simon Haykins and Barry Van Veen, "Signals and Systems", Wiley India, 2nd Edition.
- 2. M.J. Roberts "Signal and Systems", Tata McGraw Hill 2007.
- 3. Dr. Shaila Apte, "Signal and System", Wiley India Publication, 2nd Edition

Reference Books:

- 1. Charles Phillips, "Signals, Systems and Transforms", Pearson Education, 3rd Edition.
- 2. A. Nagoor Kanni "Signals and Systems", Mc Graw Hill, 2nd Edition.
- 3. Schaum's Outline of "Theory and Problems of "Signal and system", 2nd Edition.

E-Books / E- Learning References:

- 1. NPTEL Course on "Principles of Signals & System "
- Link of the Course: https://nptel.ac.in/courses/108/104/108104100/
- 2. NPTEL Course on "Signals and systems"

Link of the Course: http://www.nptelvideos.in/2012/12/signals-and-system.html

Program: Electronics and Telecommunication Engineering						
Second Yea	Second Year Electronics and Telecommunications (2022					
	Course)					
	Analog Communication (ETPCC405)					
Course Code:	ETPCC405	Credit	3			
Contact Hours:	3 Hrs/week (L)	Type of Course:	Lecture			
Examination	In-sem.	End-sem.				
Scheme	Scheme Evaluation Examination					
	40 Marks	60 Marks				

Pre-requisites:

Basics of communication system and Signals and System.

Course assessment methods/tools:

Sr.	Course assessment methods/tools	External/	Marks				
No.		Internal					
1.	In-Sem. Evaluation	Internal	40				
2.	End Semester Examination	External	60				
Course	Course Objectives						
1	To describe and analyze the mathematical to reception of amplitude modulation (AM), fr modulation (PM) signals						
2	To discuss the performance levels (Signal-to-Noise Ratio) of AM systems in the presence of additive white noise.						
3	To introduce the students with the concept of techniques PAM, PWM, PPM.	of Sampling theorem and	pulse modulation				
Course	Outcomes: Students will be able to						
405.1	Analyze the techniques of generation, transmission and reception of Amplitude Modulation Systems.						
405.2	Compare and contrast between various types of AM radio receivers.						
405.3	Explain generation and detection of FM systems.						
405.4	Compare and contrast between types of FM radio receivers.						
405.5	Classify different types of noise and analyze the performance of analog						
	communication systems in presence of	noise.					
405.6	Identify various pulse analog modu	lation techniques.					
Topics	covered:						

UNIT I: AMPLITUDE MODULATION (8 hrs.)

Base band & Carrier communication, Need of modulation ,Generation of AM (DSBFC) and its spectrum, Power relations applied to sinusoidal signals, DSBSC – multiplier modulator, Nonlinear generation, switching modulator, Ring modulator & its spectrum, Modulation Index. SSBSC , ISB & VSB, their generation methods & Comparison, Block Diagram of AM Transmitter .DRM radio introduction.

UNIT II: AM RECEPTION (8 hrs.)

Block diagram of TRF AM Receivers, Super Heterodyne Receiver, Dual Conversion Super heterodyne Receiver, Concept of Series & Parallel resonant circuits for Bandwidth & Selectivity. Performance Characteristics: Sensitivity, Selectivity, Fidelity, Image Frequency Rejection and IFRR. Tracking, Mixers. AM Detection: Rectifier detection, Envelope detection; Demodulation of DSBSC: Synchronous detection; Demodulation of SSBSC: Envelope detection

UNIT III: ANGLE MODULATION (6 hrs.)

Instantaneous frequency, Concept of Angle modulation, frequency spectrum& Eigen Values, Narrow band & wide band FM. Modulation index. Bandwidth. Bessel's Function and its

mathematical analysis, Phase Modulation, Generation of FM (Direct & Indirect Method), Direct Digital Synthesis in FM Modulator, Comparison of AM,FM and PM.

UNIT IV: FM RECEPTION (8 hrs.)

Block diagram of FM Receiver, FM ,Two way FM Radio Receiver, FM detection using Phase lock loop(PLL) ,Slope detector, Balanced Slope detector , Foster-Seeley discriminator, Ratio detector. Frequency Division Multiplexing.

UNIT V- NOISE (6 hrs.)

Sources of Noise, Types of Noise, White Noise, Thermal noise, shot noise, partition noise, Low frequency or flicker noise, burst noise, avalanche noise, Signal to Noise Ratio, SNR of tandem connection, Noise Figure, Noise Temperature, Friss formula for Noise Figure, Noise Bandwidth .Behavior of Baseband systems and Amplitude modulated systems i.e.DSBSC and SSBSC in presence of noise.

UNIT VI- PULSE MODULATION (6 hrs.)

Band limited & time limited signals ,Sampling theorem in time domain, Nyquist criteria, Types of sampling- ideal, natural, flat top, Aliasing & Aperture effect. PAM ,PWM & PPM. Introduction to Pulse Code Modulation, Delta modulation, Adaptive delta modulation ,Time Division Multiplexing.

Syllabus contents required for competitive exams (GATE, UPSC, MPSC etc.)(*if* complete unit is applicable then write only "unit 1/2/.." or write the contents from that unit):1. NA.

Text Books:

- 1. George Kennedy, "Electronic Communication Systems" 6th Edition, McGraw-Hill.
- 2. Dennis Roddy & Coolen, "Electronic Communication", 4th Edition, Prentice Hall.

Reference Books:

- 1. B. P. Lathi, "Modern Digital and Analog. Communication Systems", 3rd Edition, Oxford University Press.
- 2. Simon Haykin, "Communication Systems", 5th Edition, John Wiley & Sons.
- 3. Taub& Schilling, "Principles of Communication Systems", Tata McGraw-Hill.
- 4. Frenzel, "Principles of Electronic Communication Systems"4th Edition, Tata McGraw-Hill.

E- Books / E- Learning References:

1.NPTEL Course on "Principles of Communication Systems - I" Link of the Course: https://nptel.ac.in/courses/108104091

Second Year Electronics and Telecommunications (2022 Course) Open Source Software: Scilab (ETVSE406)					
Course	e Code:	ETVSE 406	Credit	3	
Conta	ct Hours:	01Hrs/week (L) 04Hrs/week(PR)	Type of Course:	Lecture	
Exami Schem		TW Evaluation: 50 Marks	Practical Evaluation 50 Marks	on:	
		cs of programming, Math nent methods/tools:	nematics		
Sr. No.	Course as methods/t		External/ Internal	Marks	
1.	Term work		Internal	50	
2.	Practical		External	50	
(Course Objectiv	ves			
1 2 3 4 Course	To develop pro To Evaluate, a To Perform ma	ograms in Scilab nalyze the problems and athematical Modelling i idents will be able to	•		
406.1			s of the SCILAB program developm	ent environment to enable their	
406.2		0 0	ogramming languages and concep	pt of free, opensource,	
406.3		To implement simple m environment such as SC	nathematical functions/equations i CILAB.	in numerical computing	
406.4	06.4 To Interpret and visualize simple mathematical functions and operations there on using plots/display				
406.5		Analyze the program for correctness and determine/estimate/predict the output and verify it under a simulation environment using SCILAB tools and to interpret the results of the problem statement in the form of plots.			
406.6		To apply the knowledge concepts for writing a p	e of matrix, physics and mathema program	tics and Signal processing	
Tonio	s covered:				

Introduction to SCILAB (Features, capabilities and applications) and development environment, Program execution process and format. Concept and examples of built-in functions and the concept of toolboxes, Variables and constants Definition, naming (identifiers or labels for different entities), initialization and accessing of variables. Constants and their representation, Data types-classification, memory requirement, range of values, usage and type specifiers.

UNIT II: Control structure (5 hrs.)

Branching: Conditional (if, if-else, nested and ladder if-else, switch constructs) and unconditional (break, continue and go to statements), Looping: Entry controlled (for and while)

UNIT III:BasicPloting (6 hrs.)

Built in functions, generating waveforms, Sound replay, load and save, Statement strokes and expressions, Standard input and output statements, and plot functions, Escape characters.

UNIT IV: Arrays/Matrices and strings Functions (4 hrs)

Definition, declaration, initialization (static and run-time or dynamic) and arrays, matrices and strings, Accessing of strings, array and matrices elements and relevant operations, Comparison of built-in, library and user-defined functions.

UNIT V: Application of Scilab for coding equation (2 hrs.)

D Students should be able to code Mathematical equations by referring to the Scilab NPTEL course.

UNIT VI: Application of Scilab for subject specific problem solving(2 hrs.)

Students should be able to code equations for simple electronic systems such as RLC response /Signal and systems /control system by referring to the Scilab NPTEL course.

Text Books:

1. SCILAB by Example ,M.Affouf, Create Space Independent Publishing Platform,2012 2.Introduction to Scilab: For Engineers and Scientists, by SandeepNagar,Apress; 1st ed. edition (13 December 2017)

Reference Books:

- 1. Introduction to Scilab: For Engineers and Scientists, by SandeepNagar, Apress; 1st ed. edition (13 December 2017)
- 2. Scilab: A Practical Introduction to Programming and Problem Solving Book by Tejas Sheth,20
- 3.

E- Books / E- Learning References:

1. NPTEL Course on Scilab Link of the Course: https://nptel.ac.in/courses/110106135 Online Tutorials:<u>1.https://www.scilab.org/tutorials</u>

2. ANU Teaching Modules Scilab Tutorials Graeme Chandler and Stephen Roberts http://sites.poli.usp.br/d/pqi2501/tutorial-Scilab-08.pdf

List of Tutorials

Session 1 : Basic commands ,Expressions, Indexing

Session 2 : Matrices manipulation-I

Session 3 : Matrices manipulation-II and control statements, loops

Session 4 Data Analysis

Session 5 : Graphics and plotting

Session 6 :Polynomials and Symbolic functions

Session 7 : Numerical Methods/ Calculus

Session 8: Program execution for DSP /control systems/ Plot discharging voltage across

resistor/capacitor.

Session 9:Assignment for comprehension and summary of commands / functions and advantage of scilab over other types of software.

Program:Electronic	csandTelecommu	nicationEngine	ering
			8

	P	rogram:ElectronicsandTele	ecommunicationEngineerin	Ig	
Second Year Electronics and Telecommunications (2022 Course)					
Integrated Circuits Lab (ETPCC 407)					
Course C	code:	ETPCC 407	Credit	1	
Contact I	Hours:	2 Hrs/week	Type of Course:	Practical	
Examinat Scheme	tion	Practical 50 Marks			
Pr	re-requisites:	Basic knowledge of Analog Ele	ectronic Circuits		
Co		it methods/tools:	cerome circuits.		
Sr. No.	Course asso	essment methods/tools	External/ Internal	Marks	
1.	Practical Exami	ination	External	50	
Course O	bjectives				
$ \begin{array}{r} 1\\ 2\\ 3\\ 4\\ 5 \end{array} $	To know linear To understand w To understand H	Op amp Fundamentals. and nonlinear applications of various converters using op a Filters using op amp se different special purpose I	mp		
		ents will be able to	65		
407.1		Design and analyzea	nalog electronic circuits.		
407.2		Make use of the appr	copriate instrument for measure	urement	
407.3		Implement and test t	he performance of the circui	t.	
407.4		Explain the working	principle of different electro	onic circuits.	
List of E	Experiments:				
2. N 3. I 4.D 5. I 6. I 7. I 8.S 9. I Ac	Measurement of Design,build and Design,build and Design build and Design, Build and Design, Build and imulate Active f Design, build and tivity based Pro	l test Astable/Monostable Os	gger circuit. angular Wave generator scillator using IC 555.		

Second Year Electronics and Telecommunications (2022 Course)						
	Data Structures Lab (ET	PCC 408)				
Course Code:	ETPCC 408	Credit	1			
Contact Hours:	2 Hrs/week (PR)	Type of Course:	Practical			
Examination	Examination TW					
Scheme	25 Marks					

Pre-requisites:Basic knowledge of Python.

	Course assessment methods/tools:				
Sr. No.	Course assessme	nt methods/tools	External/ Internal	Marks	
1.	TW		Internal	50	
Course	e Objectives				
1	To learn different sort	ing and searching algor	ithms and their analysis.		
2	To learn linear data st	ructures: Stack and Que	eue, Linked List and their appli	cations.	
3	To learn nonlinear da	a structures: Tree, Grap	oh and their applications.		
4	To study the systematidata.	ic ways of solving prob	blem, various methods of organ	izing large amount of	
5	To solve problems us programs.	ing data structures such	as binary tree, binary search t	ree, and graph and writing	
Course	e Outcomes: Students	will be able to			
408.1		Demonstrate various of	operations on Array using pythe	on	
408.2		Implement sorting and	l searching algorithms using py	ython	
408.3		Implement stack and c	queue using python.		
408.4		Demonstrate various of	operations Linked List using py	thon.	
408.5		Implement Binary sea	rch Tree using python.		
408.6		Implement and travers	se Graph using python.		
List o	f Experiments:				
		to perform basic opera	tion such as. Traverse, Insertio	n, Deletion, Search,	
	Update on an array	to Implement a Dinam	Soonah in Drythan		
	1, 1, 6	to Implement a Binary	s in ascending order using bub	hle sort	
		to create a linked list a		510 5011	
	Write a Python code to				
	• • •				
	•	traverse the graph usin	g DFS algorithm		
	ual LAB Links:	. 1. 44			
	Link of the virtual Lat	: https://ds1-iiith.vlabs.	ac.m/data-structures-1/		

Second Year Electronics and Telecommunications (2022 Course) Signals and systems Lab (ETPCC 409)					
Course Code:	ETPCC 409	Credit:	1		
Contact Hours:	1 Hr/week	Type of Course:	Tutorial		
Examination Scheme	Term Work Evaluation 25 Marks				

Pre-requisites:

• Integration, differentiation, matrix operations .

Course assessment methods/tools:

	Ssessment methods/tools:		N (-1 - -
Sr. No.	Course assessment methods/tools	External/ Internal	Marks
1.	Term work Evaluation	Internal	25
Course	Objectives		
1	To understand the mathematical representation and systems	on of continuous and dise	crete time signals
2	To classify signals and systems into differen	t categories.	
3	To analyze Linear Time Invariant (LTI) syst	ems in time and transform	m domains.
4	To understand concepts of correlation, spect	ral density	
Course	Outcomes: Students will be able to		
409.1	Classify basic signals and perform operation	ons on signals.	
409.2	Classify the systems based on their proper response.	^	put relation , impulse
409.3	Compute the convolution between two sign		
409.3	Analyze and resolve the signals in frequent	cy domain using Fourier	Transform.
409.4	Resolve the signals in complex frequency of	lomain using Laplace an	d z Transform.
409.5	Analyze the LTI systems using Laplace an	d z Transforms.	
409.6	Determine correlation and spectral density	between signals.	
Topics	covered:		

1 A) Sketch and write mathematical expression for the following signals in CT and Discrete Time (DT)

a) Sine b) Rectangular c) Triangular d) Exponential e) Unit Impulse f) Unit Step

g) Ramp h) Signum i) Sinc

B) Classify and find the respective value for the above signals

a) Periodic / Non Periodic b) Energy / Power /Neither

2) Take any two CT and DT signals and perform the following operations: Amplitude scaling, addition, multiplication, differentiation, integration (accumulator for DT), time scaling, and time shifting and folding.

3) Express any two system mathematical expressions in input output relation form and determine whether each one of them is, Memory less, Causal, Linear, Stable, Time invariant, Invertible.

4)Compute Convolution Integral and convoltion sum of two Signals. (Various Combinations can be

taken for this.)

5) State and prove the various properties of CT Fourier Transform. Take rectangular and sinc Signal as examples and demonstrate the applications of CTFT properties. And also demonstrate the interplay between the time and frequency domain.

6) State and prove the properties of CT Laplace Transform. Take any example of a system in time domain and demonstrate the application of LT in system analysis.

7) State and prove the various properties of z transform. Determine causality and stability of LTI system.

8) To perform auto and cross correlation for DT and CT signals. Also explain the relation between Convolution and Correlation.

Text Books:

- 1. Simon Haykins and Barry Van Veen, "Signals and Systems", Wiley India, 2nd Edition.
- 2. M.J. Roberts "Signal and Systems", Tata McGraw Hill 2007.
- 3. Dr. ShailaApte, "Signal and System", Wiley India Publication, 2nd Edition
- 4. Rameshbabu, "Signal and systems", Scientech publication

Reference Books:

- 1. Charles Phillips, "Signals, Systems and Transforms", Pearson Education, 3rd Edition.
- 2. A. NagoorKanni "Signals and Systems", McGraw Hill, 2nd Edition.
- 3. Schaum's Outline of "Theory and Problems of "Signal and system", 2nd Edition.

E- Books / E- Learning References:

 NPTEL Course on "Principles of Signals &System " Link of the Course: <u>https://nptel.ac.in/courses/108/104/108104100/</u>
 NPTEL Course on "Signals and systems" Link of the Course: <u>http://www.nptelvideos.in/2012/12/signals-and-system.html</u> Г

Second Year Electronics and Telecommunications (2022 Course) Analog Communication Lab (ETPCC410)				
Course Code:	ETPCC410	Credit	1	
Contact Hours:	2 Hrs/week	Type of Course:	Practical	
Examination Scheme	Practical 50 Marks			
Pre-requisites:				
Course assessmen	t methods/tools:			
Sr. No. Course asse	ssment methods/tools	External/ Internal	Marks	
1. Practical Examin	nation	External	50	
Course Objectives				
1 To demonstrate	generation and detection of	AM ,DSB-SC,SSB signals.		
	generation and detection of			
	mpling Theorem.			
-	the pulse modulation technic	mes		
Course Outcomes: Stude	-	1405.		
		11		
410.1		nodulation index, spectrum of	Ũ	
410.2		nodulation index, spectrum or	f FM signal.	
410.3	Verify sampling theorem			
410.4	1 0	ut pulse modulation systems.		
List of Experiments: (A				
 To generate AM (DSB-F0 different modulating signal. To detect AM signal usin constant which leads to diago To generate DSB-SC with To generate SSB signal u To generate Frequency signal, u Frequency modulator & do Verification of Sampling signal, Observe Aliasing Effa To Generate AM and FM suitable software. Prove sampling Theorem. sampling frequency using su 	C): Calculation of modulation g Envelope Detector - Practional and negative clipping the help of Balanced Modula sing Filter method/ phase shi gnal & demodulate using IC 5 emodulator using Varicap/Va Theorem, PAM Techniques, ect in frequency domain. I waveform for given modula Reconstruct the analog signal	665 (PLL based), calculation of ractor Diode and NE 566 VCC (Flat top & Natural sampling ation index, signal frequency al from its samples. Observe al	ffect of change in RC time on of modulation index & BW O. (), reconstruction of original and carrier Frequency using	

Second Year Electronics and Telecommunications (2022 Course) Sustainable Development Goals ETHSM 411					
Course Code:	ETHSM 411	Credit	1		
Contact Hours:	1 Hrs/week (L)	Type of Course:	Lecture		
Examination Scheme	TW Evaluation 25 Marks				

Pre-requisites: Basic Concepts of Environmental Studies

Course assessment methods/tools:

Sr. No.		External/ Internal	Marks	
1.	Term work Evaluation	Internal	25	
Course	Objectives			
1	To discuss the sustainable development go	als.		
2	To explain framework of Seventeen Sustain	nable Development Goals.		
3	To discuss structure and order of Sustainab	ble Development Goals.		
4	To study cases of Sustainable Developmen	t Goals.		
Course	Outcomes: Students will be able to			
411.1	Explain sustainable development goals.			
411.2	Describe framework of Seventeen Sustain	nable Development Goals.		
411.3	Discuss structure and order of Sustainable	e Development Goals.		
411.4	Report case studies of Sustainable Develo	opment Goals.		
Topics covered:				
UNIT I Sustainat Agenda 2 and Susta	: Introduction to SDGs bility, Sustainable development, Role of UN 2030, Our Common Future and Philosophy ainable Development	behind SDGs, Distinction bet		
UNIT I Sustainat Agenda 2 and Susta UNIT I Framewo SDG 1: N SDG 2: 2 SDG 3: 0 SDG 4: 0 SDG 5: 0 SDG 6: 0 SDG 6: 1 SDG 9: 1 SDG 10: SDG 11: SDG 12:	: Introduction to SDGs bility, Sustainable development, Role of UN 2030, Our Common Future and Philosophy	and the Need for SDGs, Scop behind SDGs, Distinction bet		

SDG 16: Peace and Justice Strong Institutions SDG 17: Partnerships to achieve the Goal

UNIT III: SDG Structure and Order (A

(3 hrs.)

Interrelationships and Connections between Seventeen SDGs, SDG Structure and Order at Levelsof People, Ecological and Spiritual, SDGs and Socio Ecological Systems: Economy; Society; Biosphere

UNIT IV: Sustainable Development Goals- Case Studies (2 hrs.)

Case Studies from around the World, Case studies from India

Syllabus contents required for competitive exams (GATE, UPSC, MPSC etc.)(*ifcompleteunit is applicable then write only "unit 1/2/.." or write the contents from that unit*):1. NA.

Text Books:

 Hazra, Somnath., Bhukta, Anindya (2020) Sustainable Development Goals An Indian Perspective, Springer International Publishing, Switzerland
 Ziai, Aram (2016) Development Discourse and Global History from colonialism to the sustainable development goals. Routledge, London & Amp; New York

3. OECD (2019), Sustainable Results in Development: Using the SDGs for Shared Results and Impact, OECD Publishing, Paris, https://doi.org/10.1787/368cf8b4-en.

4. Sachs, J., Schmidt-Traub, G., Kroll, C., Lafortune, G., Fuller, G., Woelm, F. 2020. The Sustainable Development Goals and COVID-19. Sustainable Development Report 2020. Cambridge: Cambridge University Press.

Relevantwebsites, movies, and documentaries

https://www.un.org/sustainabledevelopment/

Second Year Electronics and Telecommunications (2022 Course) Analog Electronic Circuits ETMNR301				
Course Code:	ETMNR301	Credit	3	
Contact Hours:	3 Hrs/week (L)	Type of Course:	Lecture	
Examination Scheme	End-sem. Examination: 75 Marks			

Pre-requisites:

Basic knowledge of Semiconductor Physics and Basic Electronics Engineering.

Course assessment methods/tools:

Sr. No.	Course assessment methods/tools	External/ Internal	Marks		
1.	Term work	Internal	25		
2.	End Semester Examination	External	75		
Course	Objectives				
1	To brief about Semiconductor devices JFE parameters & applications.	T & MOSFET, its chara	acteristics,		
2	To discuss MOSFET DC and AC Configuration	rations and its analysis.			
3	To introduce Concepts of feedbacks in am	plifiers			
4	To impart skills to evaluate the performance	ce of voltage regulator			
Course	Outcomes: Students will be able to				
301.1	Compare the characteristics and parameter	ers of JFET towards its	applications.		
301.2	Compare the characteristics and parameter	ers of MOSFET towards	s its DC circuits.		
301.3	Interpret, apply & evaluate MOSFET AC	C circuits.			
301.4	Explain MOSFET amplifiers with and w	ithout feedback			
301.5	Analyze the performance of voltage regu	lators towards its applic	ations.		
Topics	covered:				
UNIT I:	Junction Field Effect Transistor (JFET) (6	hrs.)			
JFET V	on to JFET, Types, Construction, Operation olt-Ampere characteristics, JFET Con nmon Gate) and their Comparison. Self-Bi	nfigurations (Common	-		
UNIT II	: Metal Oxide Semiconductor FET(MOSFE	T) & it's DC Analysis (6	hrs.)		
parameter	MOSFET operation, Construction of n-channel E-MOSFET, E-MOSFET characteristics & parameters, non-ideal voltage current characteristics i.e. Finite output resistance, body effect, sub-threshold conduction, breakdown effects and temperature effects, MOSFET DC Analysis.				
UNIT II	UNIT III: MOSFET AC circuit Analysis (6 hrs.)				
model of	Common Source amplifier circuit, Load MOSFET and its parameters, Analysis of C of CS Amplifier.	-	-		
Feedback terminal	- Feedback amplifiers (6 hrs.) Amplifiers: Four types of amplifiers. F characteristics of amplifiers. Examples of amplifiers.				

UNIT V- Voltage Regulator (6 hrs.)

Voltage Regulator: Block diagram of an adjustable three terminal positive and negative regulators (317,337), Typical connection diagram, Specifications of 317 and 337

Syllabus contents required for competitive exams (GATE, UPSC, MPSC etc.)(*if* completeunit is applicable then write only "unit 1/2/.." or write the contents from that unit):1. NA.

Text Books:

1.Millman Halkias, "Integrated Electronics-Analog and Digital Circuits and Systems", Tata McGraw Hill, 2000.

2.Donald Neaman, "Electronic Circuit Analysis and Design",3rd Edition, Tata McGraw Hill

3. David A.Bell, "ElectronicDevicesandCircuits", 5thEdition, Oxford press

Reference Books:

- 1. R. L. Boylstad, L. Nashlesky, "Electronic Devices and circuitsTheory", 9thEdition, PrenticeHall of India, 2006.
- 2. Phillip E. Allen, Douglas R. Holberg, "CMOS Analog Circuit Design", Second Edition, Oxford.
- 3. K. R. Botkar, "Integrated Circuits", 5th Edition, Khanna Publication.

E- Books / E- Learning References:

 NPTEL Course "Analog Electronic Circuits" https://nptel.ac.in/courses/108/105/108105158/
 NPTEL Course on "Analog Circuits" https://nptel.ac.in/courses/108/101/108101094/

Program:ElectronicsandTelecommunicationEngineering Second Year Electronics and Telecommunications (2022 Course) Analog Electronic Circuits ETMNR302

Course Code:	ETMNR302	Credit	1
Contact Hours:	2 Hrs/week	Type of Course:	Practical
Examination Scheme	Term work 25 Marks		

Pre-requisites:

• Basic knowledge of Semiconductor Physics and Basic Electronics Engineering.

Course assessment methods/tools:

<u>50 4550</u>	ssment methods/ tools.		
Sr. No.	Course assessment methods/tools	External/ Internal	Marks
1.	Practical Examination	External	50
Course	Objectives		
1	To brief about Semiconductor devices JFE	T & MOSFET, its chara	acteristics,
	parameters & applications.		
2	To discuss MOSFET DC and AC Configuration	ations and its analysis.	
3	To introduce Concepts of feedback in amp	lifiers	
4	To impart skills to evaluate the performance of voltage regulator		
Course Outcomes: Students will be able to			
302.1	Design and analyze analog electronic circ	cuits.	
302.2	Make use of the appropriate instrument for	or measurement	
302.3	Implement and test the performance of the	e circuit.	
302.4	Explain the working principle of different electronic circuits.		
List of Experiments:			
1.Design, build and test JFET/MOSFET voltage divider DC biasing circuit.			
2.Build and test single-stage CS amplifier using MOSFET.			
3.Simulate frequency response of single stage CS amplifier (use same circuit) and find the			
bandwidth.			
4. Simulate current series feedback amplifier.			

4. Simulate current series feedback amplifier.

5. Design and implement an adjustable voltage regulator using three terminals voltage regulator

Program:ElectronicsandTelecommunicationEngineering Second Year Electronics and Telecommunications (2022 Course) Integrated Circuits ETMNR401

Course Code:	ETMNR401	Credit	3
Contact Hours:	3 Hrs/week (L)	Type of Course:	Lecture
Examination scheme	End-sem. Examination 75 Marks		

Pre-requisites:

Basic knowledge of Analog Electronic Circuits.

Course assessment methods/tools:

Sr. No.	Course assessment methods/tools	External/ Internal	Marks
1.	Term work	Internal	25
2.	End Semester Examination	External	75
Course	Objectives		
1	To understand Op amp Fundamentals.		
2	To know linear and nonlinear applications of operational amplifier ICs.		
3	To understand Filters using op amp		
4	To study and use different special purpose	ICs	
Course	Outcomes: Students will be able to		
401.1	Identify internal structure and characteris	stics of op-amp	
401.2	Explain and analyze Linear applications	of op-amp	
401.3	Explain and analyze Non-linear applicati	ons of op-amp	
401.4	Design active filters		
401.5	Apply functionalities of Timer IC with their applications		
Topics covered:			
 UNIT I: Op Amp Fundamentals (6 hrs.) Block diagram of OP-AMP, Explanations of each block, Differential Amplifier configuration Differential amplifier analysis, Need and types of level shifter, ideal parameters and practic parameters of OP-AMP and their comparison UNIT II: Linear Applications of Op Amp(6 hrs.) Inverting and Non-inverting amplifier, voltage follower, voltage scaling, difference amplifier 			
Ideal integrator, errors in ideal integrator, practical integrator, frequency response of practic integrator, Ideal differentiator, errors in ideal differentiator, practical differentiator, frequen response of practical differentiator			
Comparat Problems	I: Non Linear Applications of OP amp(6 hr or,Schmitt trigger (symmetrical), Square in basic rectifier, Need of precision rectifie	wave generator, triangu	
Design ar	V: Filterss (6 hrs.) ad frequency scaling of First order and second BR Butterworth filters and notch filter.		P, BP and wide ar
	: Special Purpose IC(6 hrs.) Fimer IC, Internal schematic, Astable and n	nonostable modes of ope	eration, Application

Text Books:

of IC 555

1.Ramakant A Gayakwad, "Op-Amps and Linear Integrated Circuits", PHI, 4th edition 2.D.Roy Choudhary, Shail Jain, "Linear Integrated Circuits", New Age Int. press

Reference Books:

- 4. Sergio Franco, "Design with Operational Amplifiers and Analog Integrated Circuits", Tata McGraw Hill., Third Edition
- 5. G.B.Clayton, "Operational Amplifiers", International Edition.
- 6. K. R. Botkar, "Integrated Circuits", 5th Edition, Khanna Publication.

E- Books / E- Learning References:

1.NPTEL Course **"Integrated Circuits"** https://nptel.ac.in/courses/108108111

Second Year Electronics and Telecommunications (2022 Course) Integrated Circuits Lab ETMNR402			
Course Code:	ETMNR402	Credit	1
Contact Hours:	2 Hrs/week	Type of Course:	Practical
Examination Scheme	Term work 25 Marks		

Pre-requisites:

• Basic knowledge of Analog Electronic Circuits.

Course assessment methods/tools:

Sr. No.	Course assessment methods/tools	External/ Internal	Mar ks
1.	Practical Examination	Extern	5
		al	0
Course	Objectives		
1	To understand Op amp Fundamentals.		
2	To know linear and nonlinear applications of operational amplifier ICs.		
3	To understand Filters using op amp		
4	To study and use special purpose IC		
Course	Outcomes: Students will be able to		
402.1	Design and analyze analog electronic cir	cuits.	
402.2	Make use of the appropriate instrument	for measurement	
402.3	Implement and test the performance of the circuit.		
402.4	402.4 Explain the working principle of different electronic circuits.		
List of Experiments: (any 5)			
1. Measurement of Op amp DC Parameters			
2. Measu	rement of Op amp AC Parameters		
3. Simula	ate op-amp based Integrator		
4. Design, build and test Symmetrical Schmitt Trigger circuit			
5. Simulate Precision rectifiers.			
6. Simulate Square wave and Triangular Wave generator			
7.Simulate Active filter circuits			
8. Design, build and test Astable /Monostable multivibrator using IC 555			